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ARTICLE INFO ABSTRACT
Keywords: The Yellow Stem Borer (YSB) (Scirpophaga incertulas Walker) is a major pest in rice agroecosystems, and timely
Yellow stem borer prediction of its occurrence is crucial for effective management. This study considered data from 2013 to 2023

Count time series
Zero inflated models
Two stage models

from five YSB hotspot regions in India, namely Warangal, Rajendranagar, Pattambi, Raipur, and Chinsurah to
develop a reliable forewarning model for predicting YSB populations using weather parameters. Daily YSB
catches were recorded using light traps with 200 W incandescent bulbs, and various weather variables were also

INGARCH-ANN
ZIPAR-ANN considered. Stepwise regression identified key weather parameters influencing YSB population density, including
ZINBAR-ANN minimum and maximum temperatures, evening and morning relative humidity, sunshine hours, and rainfall. The

study utilized weekly cumulative YSB populations and average climatological data as inputs to several count time
series models, including the Integer-valued Generalized Autoregressive Conditional Heteroscedastic (INGARCH)
model, Zero-Inflated Poisson Autoregressive (ZIPAR) model, Zero-Inflated Negative Binomial Autoregressive
(ZINBAR) model, and the Artificial Neural Network (ANN), a machine learning model. Additionally, innovative
two-stage hybrid models viz., INGARCH-ANN, ZIPAR-ANN, and ZINBAR-ANN were developed and evaluated.
Classical count time series models, such as INGARCH, underperformed when a high proportion of zeros were
observed due to the absence of YSB in certain Standard Meteorological Weeks (SMWs). Zero-inflated models
were found to be better suited for such cases. Classical models showed significant residual patterns, indicating
the need for model correction. To address this, hybrid models were constructed to normalize the residuals and
enhance forecasting accuracy. Among all the models, the two-stage ZINBAR-ANN model outperformed the
others, showing the lowest Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) across most lo-
cations in both training and testing datasets for both rainy and post-rainy seasons. This innovative two-stage
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zero-inflated hybrid modeling approach offers an effective early warning system for YSB population prediction,
supporting sustainable and localized pest management strategies, and helping to mitigate rice yield losses.

1. Introduction

Rice is the most essential and widely consumed food crop in East and
Southeast Asia. The importance of rice stretches beyond its nutritional
value encompassing social, economic, and environmental benefits. India
is among the world’s largest rice producing countries; however, sub-
stantial yield loss due to the damage by insect pests such as the stem
borers, plant hoppers, gall midge, etc. remains a major area of concern
[1]. Post green revolution yellow stem borer (YSB) (Scirpophaga incer-
tulas Walker) had emerged as one of the important pests throughout the
India [1] inflicting around 20 % and 80 % yield losses in early and late
planted crops respectively. The YSB larvae bore into the central stem
leading to the production of dead tillers at the vegetative stage, popu-
larly known as ‘dead heart’ and chaffy ear heads called as ‘white ears’ at
reproductive stage (Fig. 1). Continuous flooding and application of high
doses of nitrogenous fertilisers are known to be favourable for the
population build-up of the stem borers [2]. In addition to natural
reproductive potential of insect pests, abiotic factors play a major role in
determining their abundance in a crop ecosystem, so, developing of
effective statistical model-based early warning system to predict the
growth of YSB population is crucial for designing and executing a pro-
active, site-specific pest control and management strategy.

Count time series modelling is widely used to analyse discrete count
data that exhibit autocorrelation, where the observations are usually
assumed to follow Poisson or negative binomial distributions [3]. Crop
pest modelling is a significant area of research in count time series
modelling, where the focus is on daily or weekly counts of insects or
pests that exhibit autocorrelation. While count time series models and
ML methods have been successfully applied in various fields, their
application in modelling and predicting YSB populations is relatively
new and innovative. Traditional count time series models have been
applied in various fields such as stock exchange data [4,5], monthly
claims count of workers in manufacturing industry [6], monthly strike
count time series [7], Campylobacterosis infections count time series
[8-10] influenza activity prediction using Poisson-INGARCH model and
dengue incidents prediction in Jakarta [11], as well as network traffic
count time series [12]. In agriculture, crop pest prediction has been
reviewed in [13], which explored both regression- and ML-based ap-
proaches. Hybrid time series and ML models have also been developed
for forecasting crop yields [14]. ML models have been employed in
diverse agricultural applications, including banana yield forecasting
[15], rice blast disease forecasting [16,17], rice pest prediction [18],
early blight severity prediction in tomato crops [19], sugarcane borer
disease prediction [20], rice yellow stem borer (YSB) forecasting in the
Cauvery command area of Karnataka, India [21], and YSB population
prediction using long short-term memory (LSTM) models [22].

The accurate prediction of YSB populations based on climatological
parameters is crucial for the implementation of effective and preventive

crop protection measures. However, previous attempts on forecasting
insect pest populations relied mainly on multiple regression analysis and
classical time series models. These methods have limitations while
dealing with count data that follows Poisson and negative binomial
distributions. Attempt to normalize this type of data does not always
lead to accurate prediction models [23,24]. Moreover, in a dataset
where a high proportion of zero counts are observed, even a traditional
count model may underestimate the variance of the count data, leading
to incorrect inference and predictions. Despite the generalised linear
model (INGARCH) being better suited for count data, their ability to
handle excess zeros in comparison with that of expected number of
counts under a Poisson or negative binomial distribution is questionable
[25]. These zeros can arise due to various reasons such as the presence of
structural zeros (i.e., certain events cannot occur in certain time periods)
or excess zeros (i.e., some events have a low probability of occurrence)
[26]. To model such phenomena in an effective way, zero inflated
models came into picture, where the probability of obtaining a zero
count is modelled separately from the probability of obtaining non-zero
counts. This is done by incorporating two components into the model: a
binary component that models the probability of zero counts and a count
component that models the distribution of non-zero counts. The binary
component is usually modelled using logistic or a related model, which
estimates the probability of a zero count. The count component is
typically modelled using a Poisson or negative binomial model, which
estimates the distribution of non-zero counts. Zero-inflated models have
applications in various fields, including epidemiology, ecology, finance,
and social sciences [27-31].

Crop pest modelling is a significant application in this field, where
daily or weekly pest counts serve as dependent variable and corre-
sponding weather variables such as temperature, rainfall, relative hu-
midity, sunshine hours etc. as exogenous variables. In dealing with
complex zero-inflated datasets, a parametric model may not be sufficient
to adequately capture the population dynamics. ML models such as ANN
is useful in situations when it is data-driven and devoid of any stringent
model assumptions. Moreover, if the residuals of a fitted linear model
reveal significant autocorrelation pattern, sequential implementation or
hybridization of two models are likely to result superior forecast than its
component models [32,33].

This study develops a reliable statistical model for predicting YSB
populations by utilizing count time series and machine learning ap-
proaches based on climatic input parameters that directly influence the
life cycle of YSB. It marks the first attempt to introduce a two-stage
modeling framework that integrates a zero-inflated model with an
artificial neural network (ANN), using weather variables for insect pest
modeling in agriculture, thereby extending the application of ML tech-
niques in forecasting pest populations. Furthermore, this work attempts
to combine zero inflated models such as zero inflated Poisson autore-
gressive (ZIPAR) model and zero inflated Negative Binomial

(b)

Fig. 1. (a) larva YSB (b) adult YSB (c) symptoms of YSB infected rice.

(©)
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autoregressive (ZINBAR) model along with ANN for YSB population
prediction.

The methodological framework begins with basic descriptive statis-
tics, correlation and stepwise regression analysis to explore the causal
relationships between YSB populations and weather variables.
Advanced computational methods, such as INGARCH, ZIPAR, ZINBAR,
ANN, INGARCH-ANN, ZIPAR-ANN and ZINBAR-ANN are developed to
model and forecast YSB populations in hot spot regions of India.
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2. Materials and methods
2.1. Data collection

Light trap data on YSB populations from five hotspot locations in
India (Warangal, Rajendra Nagar, Pattambi, Chinsurah, and Raipur)
(Fig. 2) were utilized for modeling. The data were generated under the
All India Coordinated Research Project on Rice (AICRPR) entomology
program across years. YSB moths were trapped using Robinson type
light traps fitted with 200 W incandescent bulbs, which were illumi-
nated daily from 6:00 pm to 6:00 am. Moths were collected each
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Fig. 2. Study area of YSB pest population.
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morning and counted manually. Corresponding daily weather data on
MAXT, MINT, RF, MRH, ERH, and SSH were obtained from automatic
weather stations at the respective locations. Standard Meteorological
Week (SMW) wise cumulative YSB moth catches and weekly mean
weather parameters during the past 11 years (2013-2023) were
considered for modeling.

As the YSB occurs in both the rainy (Kharif) and post-rainy (Rabi)
season crop of rice with discernible population peaks, the data were
apportioned into two sets namely, data set 1 and data set 2 for rainy and
post rainy seasons respectively. For data set 1, the first 525 observations
were used as the training data set for model building and the last 7
weeks’ observations were used as testing data set for validation pur-
poses. Similarly, for data set 2, the first 555 observations and the last 10
weeks’ observations were used as the training and the validation
(testing) data set, respectively.

2.2. Statistical models

To understand the nature of the data descriptive statistics viz., mean,
standard error (SE), skewness, kurtosis, minimum, maximum, and co-
efficient of variations (CV) were estimated. Graphical depiction of data
with time series plots was done. Stepwise correlation analysis preceded
by Pearson’s correlation analysis was performed for understanding the
relationship between the YSB population and exogenous weather vari-
ables. The time series plots, INGARCH, ANN and two stage models were
developed in R software [34].

2.2.1. INGARCH (Integer valued generalized autoregressive conditional
heteroscedastic) model

INGARCH model is a special case of generalised linear model (GLM),
where the conditional distribution of dependent variable assumed to
follow popular discrete distributions like Poisson, negative binomial,
generalised Poisson and double Poisson distributions [35]. Let us denote
the count time series by {Y;:t € N} and time varying r-dimensional

covariate vector say {X; : t € N} i.e. X, = (X[‘l...,Xt_r)T. The conditional

Y
Fa

mean becomes E< > = A and F, is historical data.

The generalised model form is expressed as follows:
p ~ q
g(/lz) =p, + Z w8 (Yt—ik) + Zﬁlg (ﬂt—jl) + ﬂT (€D)]
k=1 =1

Case 1: Consider the situation where g and g are equal to identity i.e.,
g00)= g(x) = x, further, Y, follows (Poisson) INGARCH (p, q) model with
p>1and g< 0 if

a) Y; conditioned on Y, 1,Y; o, ..., is poison distributed

> satisfies

b) The conditional mean A, = E (YHK;HH

P
de=Po+ Y @i+ Y Py with f, >0and ay, .., &y, ... J1, ... f,

q
=1 =1

>0
(2)

Assuming further that Y;|Y;_; is Poisson distributed, then we obtain
an INGARCH model of order p and q, abbreviated as INGARCH (p, q)
model. If ¢ = 0, the model can be referred as the INARCH(p) model.

Case 2: The Negative Binomial (NB) distribution allows for a con-
ditional variance to be larger than the mean A, which is often referred to
as over-dispersion parameter. It is assumed that Y;|F,_1~NB (1 @).
When @— 0. The Poisson distribution is a limiting case of the Negative
binomial distribution by the assumption;
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Y,
Yi1,Y o, ..

Y
~B<n.ﬁ+a n ) 3)

Estimation through INGARCH model using conditional likelihood
estimation, especially on the asymptotic properties, are given by [36,
37]. The INGARCHX model is an extended version of the INGARCH
model, where future values of a variable depend on its past values and
past values of exogenous variables.

2.2.2. Zero inflated Poisson Autoregressive (ZIPAR) model

Poisson regression is used to predict a dependent variable that con-
sists of count data given one or more independent variables. The zero
inflated Poisson autoregressive (ZIPAR) model is expressed as follows
[38]:

pr(Yi=j) =z + (1 - rmexp(—p), if j =0 4

The Poisson distribution is described as follows

Y, —

(1_ﬂ)m’ ifj>0 (5)
Yi

Where, y; is the logistic link function defined below. The Poisson

component can include an exposure time t and a set of k regressor var-

iable. the expression relating these quantities is
w; = exp(In(ty) + prz1, + Poza, + o+ Preows) (6)

Often, x; = 1, in which case f is called the intercept, the regression
coefficients fs, f3,..., fx are unknown parameters that are estimated
from a set of data and their estimates are symbolised as by, by .... b This
logistic link function z; is given by

— /‘Li
144

i 7
Where, ﬂi = exp (ln (ti) +y12'1i + Y222 + ... +y,,,z,m-)
The logistic component includes time t and a set of m regressor
variables.

2.2.3. Zero inflated negative binomial autoregressive (ZINBAR) model
The zero inflated negative binomial regression is used for count data
that exhibit over dispersion and excess zeros. The data distribution
combines the negative binomial distribution and the logit distribution
[39,40] The possible values of y are the non-negative integers: 0, 1, 2, ...

Prbi=J) ‘{ (1 m)gly) if > 0 ®

Where, 7; is the logistic link function defined below and g(y;) is the
negative binomial distribution given by

Tyi+al) 1 a1 [ HHi !
Dl ) T+ D\ +ap)” \T+ o)
(C)]

The negative binomial component can include an exposure time t
and a set of k regressor variable. The expression related to these quan-
tities is

8i) = Pr(Y =yilu;, a) =

iy =exp(In(t;) + o1, + Pz + oo+ Pros + 1 Y1 + Yoo+ . +4,Y.p)
(10)

Often, x; = 1, in which case f; is called the intercept, the regression
coefficients fs, fs3,..., fx are unknown parameters that are estimated
from a set of data and their estimates are symbolised as by, by .... bx.

2.2.4. Artificial neural network model (ANN)

ANN is mostly used model among the machine learning techniques.
ANNs are non-linear, nonparametric and self-adaptive approaches as
opposed to the model-based non-linear methods. Neural networks are
composed of layers of neurons where each layer receives input from the
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previous layer and passes the output to the next layer.
The general expression for the final output Y; of a multi-layer feed
forward autoregressive neural network is expressed as follows:

q p
Y= ao+ Zajg<ﬁo,-+ Zﬁinu> +e an
= i=1

Where, ¢;(j=0,1,2,...,q) and $;(i=0,1,2,...,p,j=0,1,2,...,q)
are the model parameters, also called as the synopsis weights, p is the
number of input nodes, q is the number of hidden nodes, and g is the
activation function. Training part in ANN minimises the error function
between actual and predicted values. The error function of autore-
gressive ANN is expressed as follows:

_ 1 e
E_Nip;(et)

1 N q » 2
=3 |v- {ao+ Za,—g(ﬁonrZﬁint,-) H 12)
N-p 5% = i1

Where, N is the total number of error terms.

2.2.5. Proposed two stage modelling

The rationale for selecting the Zero-Inflated Negative Binomial
Autoregressive (ZINBAR) model lies in its ability to handle over
dispersed count data with excess zeros, which are common in pest and
disease time series [25,39]. Classical models such as Poisson-INGARCH
assume equi-dispersion and are often inadequate in capturing both the
excess zeros and the temporal dependency structure [4]. Furthermore,
while ZINBAR captures the statistical structure of zero-inflated, auto-
correlated count data, it may fall short in modeling non-linear patterns
and complex interactions [40]. This is where Artificial Neural Networks

Select the
count data

Check for autocorrelation
(Box-Pierce non correlation test)
Yes No Stop and choose other
count TS data

Select the
model

Model Estimation

Diagnostic Check of residuals
(Box-Pierce non correlation
test)

Stage |
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(ANNSs) are beneficial, as they excel in capturing hidden non-linear de-
pendencies and adapt to irregularities in input-output relationships. The
hybrid ZINBAR-ANN framework integrates the strengths of both para-
digms: the probabilistic rigor of ZINBAR for zero-inflation and auto-
correlation, and the flexibility of ANN for non-linearity. This
hybridization has demonstrated improved predictive accuracy in
modeling time series with structural zeros. The proposed two stage
modelling in this work considers the time series Yt as a combination of
both auto-correlated original time series and significant residuals of the
model. This approach follows the Zhang’s [41] hybrid approach,
accordingly the relationship between auto-correlated count time series
and significant residuals were considered. In this work, the
auto-correlated count time series were modelled using INGARCH, ZIPAR
and ZINBAR models (Stage-I) and significant residuals were modelled
using ANN model (Stage II).

The proposed methodology consists of two steps. Firstly, an
INGARCH, ZIPAR and ZINBAR models were employed to model the
count time series data. In the second step, if the residuals obtained from
INGARCH, ZIPAR and ZINBAR models were found (Stage II) to be sig-
nificant by Box pierce test and nonlinear by the BDS (Brock-Dechert-
Scheinkman) test, then they were modelled and predicted using the ANN
model. Finally, the forecasted values from stage 1 and stage 2 compo-
nents were combined to generate aggregated forecasted values. The
schematic representation of proposed methodology is depicted in Fig. 3.

Y.=5 +5, (13)

Where, §; and §; represent the predicted count time series (stage I)
and predicted significant residual components (stage II), respectively.

If residuals are significant
fit Nonlinear/ ML models

Stage Il

Split training and testing
data sets

Choose appropriate ML model

Diagnostic checking of residuals
Choose suitable model

Predicted
values

Predicted values of
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Non-signifi ignifi lineari
ignificant significant No$ Im.earlty Combine
esting +(b)
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original values (a)

Predicted values of
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Fig. 3. Schematic representation of proposed two stage methodology.
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2.3. Comparison criteria

2.3.1. MSE and RMSE
The mean squared error (MSE) and root mean square error (RMSE)
are the two criteria used to measure model accuracy in this study. MSE
measures error in statistical models by calculating the average squared
difference between observed and predicted values.
MSE = 1 Z (Y; - ) 14
n

i=1

Where, n is number of data points, Y; and lAG are the observed and
predicted values, respectively. RMSE is the square root of the mean of
the square of all the errors.

2.3.2. MAE

Mean Absolute Error (MAE) measures the average absolute differ-
ence between the predicted and actual values. It is a scale-dependent
metric but is widely used due to its simplicity and interpretability.

1 -
MAE:EZM—N 5)
t=1

Where, y, is actual observed value at time t, ¥, is predicted value at
time t and n is the total number of observations

2.3.3. MASE

Mean Absolute Scaled Error (MASE) is a scale-independent metric
proposed by [42] for evaluating forecast accuracy. It is calculated by
dividing the MAE of the forecasting model by the MAE of a naive
one-step lag model.

%Zgzlly[_yt‘

MASE = =
anth:z Ve = Yeal

(16)

In this formula, the numerator represents the Mean Absolute Error
(MAE) of the proposed forecasting model, reflecting the average abso-
lute difference between the predicted and observed values. The de-
nominator corresponds to the MAE of the naive one-step lag model,
which assumes that the forecast at time t is equal to the observed value at
time t-1 i.e., ¥; = ¥, ;. This naive model serves as a basic benchmark,
and by scaling the model’s MAE against it, MASE provides a standard-
ized measure of forecast accuracy. A MASE value less than one indicates
that the model outperforms the naive approach, while a value greater
than one suggests inferior performance.

2.4. Diebold-Mariano test

The Diebold-Mariano (DM) test is used to determine whether the
two forecasts are significantly different or not [43]. Let e; and r; be the
residuals for the two forecasts;

e=yi—fi a7
n=Yi—& (18)
Let d; be defined as d; = €2 —r? or d; = |e;| — || (19)

The time series d; is called the loss-differential. Clearly, the first of
these formulas are related to the MSE metric and the second is related to
the MAE metric. We now define:

o1&

d= - ;:1 di, u = E[d] (20)
o 1T & = =

For n >k > 1, define 7x = a E (di — d)(dix — d) 21D

i=k+1

7k is the autocovariance at lag k. For h > 1, Diebold-Mariano statistic
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is defined as follows:

d
[7o+250n] /n

DM =

(22)

It is generally sufficient to use the value h = n'’3 + 1. Under the

assumption that y = 0 (the null hypothesis), DM follows a standard
normal distribution i.e., DM ~ N (0, 1). Thus, there is a significant dif-
ference between the forecasts if, DM > Z;,, where Z; is the two-tailed
critical value for the standard normal distribution. The key assumption
for using the DM test is that the loss differential time series d; is
stationary.

3. Results

The time series plots of weekly counts of YSB light trap catches of five
study sites during the study period were plotted in Fig. SF1. The time
series plots showed that at all examined locations, the YSB incidence was
higher between the 35th to 45th standard meteorological weeks
(SMWs), except at the Pattambi and Chinsurah centres, where it showed
between the 20th to 30th SMWs. At the Rajendra Nagar centre, it
showed two peaks, between 1st to 10th and the 35th to 45th SMWs.
Summary statistics of the yellow stem borer population and exogenous
weather variables were presented in supplementary Tables ST1 and ST2,
respectively. In most of the centres, the YSB count and the weather
variables were highly skewed and leptokurtic in nature. The coefficient
of variation of YSB were of highly heterogeneous in nature.

The Pearson correlation coefficients between YSB populations and
the weather variables are presented in Supplementary Table ST3. YSB
population was having a significantly low positive correlation with that
of sunshine hours (SSH) at the Warangal, Rajendra Nagar, and Pattambi
centres. Similarly, a low significant correlation was found between YSB
populations and maximum temperature (MAXT) at the Raipur centre.
Additionally, a low significant correlation was observed between YSB
populations and MAXT, minimum temperature (MINT), and evening
relative humidity (ERH) at other centres. However, at Warangal, the
correlation between YSB populations and both MAXT and MINT was
significantly negative. In Raipur, the correlation between YSB pop-
ulations and ERH as well as rainfall (RF) was also significantly negative.
At the Pattambi centre, a significant negative correlation was found
between YSB populations and both MINT and RF. Supplementary
Table ST3 provides a clear representation of the relationships between
YSB populations and the various weather variables.

To identify the climatological factors influencing the incidence of the
YSB population, a stepwise regression analysis was conducted, and the
results are shown in Supplementary Table ST4. The MINT, SSH, and RF
at Warangal; SSH and RF at Rajendra Nagar; RF, MINT, MAXT, and ERH
at Pattambi; ERH at Raipur; and MAXT, MINT, and RF at Chinsurah were
found to significantly contribute to the YSB population. However, the R?
values for the fitted regression models at all five centres were low,
indicating a poor fit. This may be attributed to the presence of non-linear
and highly heterogeneous relationships among the variables.

3.1. Results of INGARCH models

Box-Pierce non-correlation test indicated that the data under
consideration were auto-correlated (p<0.0001) in nature. As a next step,
the INGARCH model with exogenous climatological variables were
fitted and the model summaries for the five centres for data set 1 were
presented in Table 1 (for data set 2, refer to Supplementary Table ST5).
Even though the coefficients of the lagged observations were found to be
significant, effect of no climatological parameters were significant.
Moreover, diagnostic checking of residuals by the Box-Pierce non-cor-
relation test revealed that the residuals were auto-correlated (p<
0.0001) in nature.
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Table 1
Parameter estimates of INGARCH models for the study centres for data set 1.

Smart Agricultural Technology 12 (2025) 101381

Parameters Estimate Std. error Z value Pr(>|z)) Box-Pierce non-correlation test for residuals
Warangal Intercept 5.00 14.1 0.38 0.70
beta 4 0.5 0.11 4.62 <0.001
alpha 4 0.2 0.12 2.02 0.04
MAXT <0.0001 0.42 0.00 0.99 7? =132.07
MINT <0.0001 0.50 0.00 1.00 (p< 0.0001)
RF 0.06 0.08 0.68 0.49
MRH 0.0001 0.19 0.00 0.99
ERH 0.02 0.18 0.10 0.91
SSH 0.12 0.08 1.42 0.15
Rajendra Intercept 1.08 0.2 0.49 0.62
Nagar beta_2 0.13 0.96 1.37 0.16
alpha 2 0.46 0.34 1.36 0.17 7? = 0.003 (p = 0.92)
MAXT <0.0001 0.67 0.005 1
MINT <0.0001 0.78 0.002 1
RF 0.10 0.15 0.63 0.52
MRH 0.64 0.25 0.03 0.97
ERH <0.0001 0.21 0.00 1
SSH 0.02 0.08 0.29 0.77
Pattambi Intercept 205 653 0.314 0.753
beta 2 0.51 0.188 2.731 0.006
alpha 2 <0.0001 0.175 0.051 0.959 7% =119.6 (p<0.001)
MAXT <0.0001 0.113 0.000 1
MINT 0.198 8.26 0.002 0.998
RF 0.172 0.46 0.370 0.711
MRH <0.0001 5.7 0.001 0.999
ERH 0.064 2.47 0.026 0.979
SSH 0.001 0.008 0.23 0.63
Raipur Intercept 1.83 2.31 0.79 0.42
beta 2 0.29 0.67 4.36 <0.001
alpha 2 0.65 0.8 8.13 <0.001
MAXT <0.0001 0.2 0.005 1 7% =126.18 (p<0.001)
MINT <0.0001 0.27 0.003 1
RF <0.0001 0.56 0.01 0.99
MRH <0.0001 0.6 0.002 0.99
ERH 0.23 0.8 0.28 0.77
Chinsurah Intercept <0.0001 2.66 0.00 1.00
beta 2 0.43 0.13 3.23 0.001
alpha 2 0.18 0.14 1.28 0.20
MAXT 0.2 1.9 0.11 0.92 7% =150 (p<0.001)
MINT 2.7 1.82 1.51 0.13
RF <0.0001 0.27 0.007 1.00
MRH <0.0001 0.22 0.005 1.03
ERH <0.0001 0.54 0.001 0.3

3.2. Results of ZIPAR models

The ZIPAR models with 5 lags were chosen based on the lowest AIC
(Akaike Information Criterion) and BIC (Bayesian Information Crite-
rion) values. The parameter estimates of ZIPAR models for all five
centres for data set 1were represented in Table 2 (for data set 2, refer to
Supplementary Table ST6). Most of the parameter estimates are non-
significant and residuals shows significance as the probability of Box-
Pierce non-correlation was less than 0.05, indicates residuals under
consideration are significant for all the centres except for Rajendra
Nagar where residual probabilities are non-significant as probability is
more than 0.05 for both data set 1 and data set 2.

3.3. Results of ZINBAR models

The ZINBAR models with 5 lags were chosen on the basis of the
lowest AIC and BIC values. The parameter estimates of the ZINBAR
models for all the five centres for data set 1 were represented in Table 3
(for data set 2, refer to Supplementary Table ST7). Majority of the
parameter estimates are non-significant, while the residuals are signif-
icant, as indicated by the Box-Pierce test, with non-correlation proba-
bilities below 0.05. This means the residuals are significant for all
centers except Rajendra Nagar, where the residual probabilities exceed

0.05, making them non-significant for both data set 1 and data set 2.

3.4. Results of ANN models

The sigmoidal and linear activation functions were used in the input
to hidden layer and in hidden to output layer, respectively. The weather
variables namely MAXT, MINT, MRH, ERH, SSH and rainfall, were also
used as exogenous variables in input layer. The suitable candidate
models were chosen based on lowest MSE and RMSE values. Table 4
showed the specifications of the selected ANN models (for data set 2,
refer to Supplementary Table ST8). After fitting of the models, the
diagnostic checking of the residuals was carried out by Box- Pierce non-
correlation test and found that the residuals were non-correlated in
nature.

3.5. Two stage modelling and forecasting

The first step in the two stage model building process was to obtain
the predicted and the residual values from the INGARCH, ZIPAR and
ZINBAR models. In the next step, the presence of autocorrelation in the
residuals of fitted models was tested along with nonlinearity. After
confirmation of the presence of autocorrelation and non-linear structure
in the residual series of all the study locations except Rajendra Nagar,
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Table 2

Parameter estimates of the ZIPAR models for the study centers for data set 1.
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Parameter P (Y>0) P(Y=0) Box-Pierce non correlation test for residuals
Estimate  Std. Error ~ Zvalue  Pr(>|z])  Estimate  Std. Error  Zvalue  Pr(>|z|)

Intercept 2.70 0.01 163.64 <0.0001 0.33 0.22 1.50 0.134 7> = 9.08
Warangal ysb_lagl 0.01 0.0002 42.71 <0.0001 -0.60 0.11 -5.32 <0.0001 p=0.03

ysb_lag2 0.002 0.0003 7.57 <0.0001 -0.01 0.03 -0.43 0.664

ysb_lag3 0.003 0.0003 8.45 <0.0001 0.01 0.03 0.40 0.693

ysb_lag4 0.002 0.0003 7.64 <0.0001 0.003 0.02 -0.17 0.862

ysb_lag5 0.001 0.0003 2.57 0.01 0.01 0.01 0.54 0.591

Rajendra Nagar  Intercept 3.01 0.01 210.84 < 0.001 0.65 0.18 3.63 0.0002 7% = 0.002

ysb_lagl 0.004 <0.001 54.82 < 0.001 -0.37 0.06 -5.79 <0.001 p=0.91

ysb_lag2 0.002 <0.001 23.28 < 0.001 0.05 0.02 2.83 0.004

ysb_lag3 <0.001 <0.001 2.84 0.004 -0.08 0.03 -2.65 0.008

ysb_lag4 0.001 <0.001 12.66 < 0.001 0.02 0.01 2.05 0.04

ysb_lag5 0.0017 <0.001 16.75 < 0.001 -0.01 0.01 -1.45 0.14

Intercept 4.65 0.066 699.1 <0.001 -1.45 0.001 -8.74 <0.001 72 =94
Pattambi ysb_lagl <0.0001 <0.0001 510.46 <0.001 -0.001 0.001 -0.8 0.42 p=0.02

ysb_lag2 <0.0001 <0.0001 193.87 <0.001 -0.004 0.003 -1.19 0.23

ysb_lag3 <0.0001 <0.0001 -65.25 <0.001 0.002 0.002 1.11 0.26

ysb_lag4 <0.0001 <0.0001 150.27 <0.001 -0.007 0.003 -0.02 0.97

ysb_lag5 <0.0001 <0.0001 89.16 <0.001 -0.004 0.003 -1.44 0.15

Intercept 4.65 0.066 699.1 <0.001 -1.45 0.001 -8.74 <0.001 7> = 154
Raipur ysb_lagl <0.0001 <0.0001 510.46 <0.001 -0.001 0.001 -0.8 0.42 p=0.21

ysb_lag2 <0.0001 <0.0001 193.87 <0.001 -0.004 0.003 -1.19 0.23

ysb_lag3 <0.0001 <0.0001 -65.25 <0.001 0.002 0.002 1.11 0.26

ysb_lag4 <0.0001 <0.0001 150.27 <0.001 -0.007 0.003 -0.02 0.97

ysb_lag5 <0.0001 <0.0001 89.16 <0.001 -0.004 0.003 -1.44 0.15

Intercept 4.5 0.52 869.4 <0.001 -2.416 0.534 -4.53 <0.001 7’=46
Chinsurah ysb_lagl 0.13 <0.0001 270.4 <0.001 -0.090 0.031 -2.92 0.003 p=0.03

ysb_lag2 1.57 <0.0001 20.9 <0.001 0.020 0.007 2.79 0.005

ysb_lag3 <0.0001 <0.0001 3.4 0.0597 -0.003 0.003 -0.94 0.34

ysb_lag4 <0.0001 <0.0001 12.3 <0.001 0.004 0.002 1.68 0.092

ysb_lag5 <0.0001 <0.0001 40.5 <0.001 0.002 0.002 1.11 0.26

the ANN model was used for modelling and forecasting of the INGARCH,
ZIPAR and ZINBAR residuals for the rest four centres. The residuals
predicted from the ANN were then combined with the predicted values
obtained from the INGARCH, ZIPAR, and ZINBAR models. The results of
the BDS test of the fitted model residuals for datasets 1 and 2 are pre-
sented in Supplementary Tables ST9 and ST10, respectively

3.5.1. Results of INGARCH-ANN models

After validating autocorrelation by Box-Pierce test (Table 1 and
Supplementary Table ST5) and nonlinearity by the BDS test (Supple-
mentary Table ST9 and ST10), the same residuals were modelled using
ANN model along with exogenous weather varaibles. Further, the pre-
dicted residuals were combined with the forecasts obtained from orig-
inal INGARCH model. This modeling procedure is called as INGARCH-
ANN two stage count time series methodology. Supplementary
Tables ST11 and ST12, showed the specifications of the selected ANN
models for INGARCH residuals for data set 1 and 2, respectively. After
fitting of the model, the diagnostic checking of the residuals by Box-
Pierce test showed that residuals were non-correlated in nature.

3.5.2. Results of ZIPAR-ANN models

Similar to the INGARCH-ANN two stage count time series method-
ology, the significant residuals of ZIPAR (Table 2 and Supplementary
Table ST6) were modelled using ANN model along with exogenous
weather varaibles as the residuals were nonlinear (Supplementary
Table ST9 and ST10). Further, the forecasted residuals were combined
with the forecasts obtained from original ZIPAR model. This modeling
procedure is called as ZIPAR-ANN two stage count time series method-
ology. Supplementary Tables ST13 and ST14, showed the specifications
of the selected ANN models for ZIPAR residuals for data set 1 and 2,
respectively. Diagnostic checking of the residuals of ZIPAR-ANN meth-
odology were also found to be non-correlated.

3.5.3. Results of ZINBAR-ANN models

Similarly, in ZINBAR-ANN two stage count time series methodology,
once the autocorrelation (Table 3 and Supplementary Table ST8) and
nonlinearity of ZINBAR residuals (Supplementary Tables ST9 and ST10)
were confirmed, the residuals were modelled using ANN model along
with exogenous weather varaibles. Further the fitted residuals were
combined with the predicted values obtained from original ZINBAR
model. Supplementary Tables ST15 and ST16, showed the specifications
of the selected ANN models for ZINBAR residuals for data set 1 and 2,
respectively. The diagnostic checking of the residuals also confirmed the
non-existence of autocorrelation structure.

4. Discussion

Prior to developing the proposed forewarning models, the cause-and-
effect relationship between Yellow Stem Borer (YSB) populations and
weather variables were analysed. Stepwise regression analysis revealed
that minimum temperature, maximum temperature, rainfall, sunshine
hours, and morning and evening relative humidity significantly influ-
ence the occurrence of YSB populations. It was observed that different
weather variables have varying effects on the YSB population across
different centres. A detailed estimation of the parameters and their
significance is provided in Supplementary Tables ST4. These findings
align with the results reported by [44].

The comparative assessment of different models employed models in
terms of MSE and RMSE values for data set 1 were presented in Table 5
for both training and testing sets (for data set 2, refer to Supplementary
Tables ST17). In the INGARCH and ANN models, weather variables were
directly incorporated as exogenous variables. For ZIPAR and ZINBAR
models, weather data were also treated as exogenous variables, but with
an additional step; significant residuals of the ZIPAR and ZINBAR
models were fitted as exogenous variables. When building the ANN
models for these residuals, the weather variables were used as
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Table 3
Parameter estimates of the ZINBAR models for the study centers for data set 1.
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Parameter P (Y>0) P(Y=0) Box-Pierce non correlation test for residuals
Estimate  Std. Error  zvalue  Pr(>|z[) Estimate  Std. Error  zvalue  Pr(>|z|)
Intercept 2.26 0.09 26.02 <0.0001  0.90 0.32 2.83 <0.0001 42 =8.08
Warangal ysb_lagl 0.02 0.002 7.72 <0.0001  -0.83 0.30 -2.75 0.01 p=0.05
ysb_lag2 0.003 0.002 1.41 0.159 -0.71 0.42 -1.67 0.10
ysb_lag3 0.003 0.002 1.19 0.236 0.00 0.06 -0.07 0.95
ysb_lag4 0.002 0.002 0.75 0.452 0.07 0.08 0.92 0.36
ysb_lags 0.002 0.002 1.23 0.22 -0.02 0.03 -0.80 0.43
Log(theta)  0.053 0.018 2.94 0.003
Intercept 2.34 0.09 23.6 < 0.001 1.4 0.27 5.03 <0.001 12 = 0.085
Rajendra Nagar  ysb_lagl 0.02 0.2 8.11 <0.001 -1.07 0.36 -2.90 0.003 p=0.92
ysb_lag2 0.001 0.02 1.09 0.27 -0.46 0.20 -2.27 0.02
ysb_lag3 0.0014 0.01 0.09 0.92 -0.03 0.07 0.5 0.61
ysb_lag4 0.0015 0.002 0.69 0.49 -0.05 0.06 -0.82 0.41
ysb_lags 0.0012 0.001 1.33 0.18 -0.009 0.03 -0.25 0.79
Log(theta)  2.34 0.09 23.61 <0.001 1.4 0.27 5.03 <0.001
(Intercept) 2.9 0.096 40.4 <0.001 -0.10 0.40 -0.25 0.8 72 =9.07
Pattambi ysb_lagl 0.001 <0.0001  7.62 <0.001 -1.48 0.52 -2.87 0.004 p =0.02
ysb_lag2 <0.0001  <0.0001  1.65 0.09 0.002 0.03 0.07 0.94
ysb_lag3 <0.0001  <0.0001  -0.17 0.86 0.007 0.07 0.1 0.91
ysb_lag4 <0.0001  <0.0001  2.24 0.02 -0.001 0.06 -0.01 0.98
ysb_lags <0.0001  <0.0001 0.5 0.57 -0.041 0.06 -0.64 0.52
Log(theta)  -0.9 0.64 -13.6 <0.001
Intercept 2.5 0.071 35.20 <0.001 7.7 0.42 -4.27 <0.001 22 = 391
Raipur ysb_lagl 0.015 0.0023 10.17 <0.001 -34.7 0.032 -1.07 1.03 p=0.04
ysb_lag2 0.001 0.002 0.63 0.53 1.4 0.045 2.04 0.56
ysb_lag3 0.0015 0.001 0.90 0.36 -1.0 0.02 -0.49 0.45
ysb_lag4 0.0013 0.002 0.38 0.7 2.5 0.01 0.35 1.05
ysb_lags 0.003 0.001 2.34 0.01 1.3 0.02 -0.05 0.24
Log(theta)  0.402 0.07 5.71 <0.001
(Intercept)  4.02 0.06 61.95 <0.001 9.48 141.30 -0.07 0.94 72 =492
Chinsurah ysb_lagl 0.003 0.0004 9.98 <0.001 -4.81 143.25 -0.03 0.97 p=0.03
ysb_lag2 -0.0007  0.0003 -2.25 0.024 0.11 51.13 0.00 0.998
ysb_lag3 0.0001 0.0003 0.44 0.66 -0.12 7.07 -0.02 0.98
ysb_lag4 0.0005 0.0004 1.49 0.13 0.32 17.33 0.005 0.95
ysb_lags 0.0007 0.0003 2.47 0.014 0.01 0.97 0.01 0.99
Log(theta)  0.32 0.06 4.96 <0.001
independent variables in the input layer, while the residuals were
Table 4 o considered as the dependent variables. This adjustment was made to
ANN model specifications for the study centres for data set 1. . . 16 A .
simplify the model-building process by indirectly accounting for
Specifications =~ Warangal =~ Rajendra Pattambi Raipur Chinsurah weather information in the modelling phase.
ong the models studied, the - model outperforme
Nagar Among the models studied, the ZINBAR-ANN model outperformed
Input lag 4 S 4 1 1 the INGARCH, ZIPAR, ZINBAR, INGARCH-ANN, and ZIPAR-ANN
O“tp‘ftbl 1 1 1 1 1 models in both training and testing datasets, as indicated by its lowest
ZZE; let MSE and RMSE values in both data set 1 and 2. The performance hier-
variable archy of these models can be represented as follows: ZINBAR-ANN >
Hidden nodes 5 10 5 5 5 ZIPAR-ANN > INGARCH-ANN > ANN > ZINBAR > ZIPAR > INGARCH,
Hidden layers 1 1 1 1 1 across all study locations except the Rajendra Nagar centre in training
Ex°g‘°j“;’;15 6 6 6 5 5 and testing population in both the data sets. For the Rajendra Nagar
variables ) .
Model 4:58:1L 5:10S:1L 3:68:1L 1:58:1L 1:58:1L centre, hybrid models were not developed because the residuals of the
Total number 61 131 61 41 41 INGARCH, ZIPAR, and ZINBAR models were non-significant. The per-
of formance hierarchy of the models for YSB count data at Rajendra Nagar
Para“;eters J q q J q was as follows; ANN > ZINBAR > ZIPAR > INGARCH for both the data
Network t F F F F F . .
etwork type ce ce ce ce ee sets. Centre-wise forecasts of different models for both data set 1 and 2
Forward Forward Forward Forward Forward A i |
Activation Sigmoidal ~ Sigmoidal  Sigmoidal  Sigmoidal  Sigmoidal were provided in Supplementary Tables ST18-ST27, respectively. Actual
function (I: vs. fitted plots for Data Set 1 are shown in Figs. 4a-4e, whereas for Data
H) Set 2, the actual vs. fitted plots are provided in Supplementary
Acftlva?on(H Identity Identity Identity Identity Identity Figure SF2.
unction(H: . .
o) The error reduction achieved by the proposed ZINBAR-ANN model
Box-Pierce 2 _ 2 _ 2 _ 2 _ 2 _ compared to classical models is shown in supplementary Tables ST29-
x X x bs ¥ p pp y
non- 0.03 0.08 0.02 0.26 3.25 ST33 for both training and testing splits of the datasets. The ZINBAR-
c°m;1a“°" p=08  (p=007) (p= = (p=0.07) ANN model consistently outperforms both the INGARCH and ZINBAR
test 1 e e . .
r:i dzerﬂs 0.871) 0.60) models, with significant error reductions across various datasets and

locations. In Dataset 1, for Warangal, it reduces errors by 68.3 % during
training and 60.7 % during testing compared to the ZINBAR model, and
by 73.7 % and 65.7 % compared to the INGARCH model. Similar
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Table 5
Comparison criteria for different models for YSB populations in training and testing sets for data set 1.
Data Split Criteria INGARCH ZIPAR ZINBAR ANN INGARCH-ANN ZIPAR-ANN ZINBAR-ANN
Warangal Training Set MSE 1090.92 890.23 756.96 339.69 152.96 112.79 75.75
RMSE 33.03 29.80 27.51 18.43 12.37 10.62 8.70
MAE 23.02 18.81 16.38 10.82 7.12 5.43 4.06
MASE 1.56 1.29 1.12 0.74 0.49 0.38 0.28
Testing Set MSE 1103.17 1057.40 839.36 429.75 280.86 218.11 129.97
RMSE 33.21 32.52 28.97 20.73 16.76 14.77 11.40
MAE 29.43 30.86 26.14 17.00 13.86 11.57 8.00
MASE 1.40 1.47 1.24 0.81 0.66 0.55 0.38
Rajendra Nagar Training Set MSE 4205.90 3469.80 2117.30 340.50
RMSE 64.85 58.90 46.01 18.45
MAE 33.86 25.80 19.03 10.17
MASE 1.39 1.10 0.81 0.43
Testing Set MSE 7364.73 5903.67 2220.57 1102.14
RMSE 85.82 76.84 47.12 33.20
MAE 73.29 65.57 46.00 22.14
MASE 2.36 2.12 1.48 0.71
Pattambi Training Set MSE 248,930.42 140,362.22 98,544.57 72,631.99 36,138.79 20,735.13 15,915.50
RMSE 498.93 374.65 313.92 269.50 190.10 144.00 126.16
MAE 219.20 143.23 116.19 103.58 71.71 43.64 41.45
MASE 1.50 0.99 0.80 0.72 0.50 0.30 0.28
Testing Set MSE 299,906.78 194,479.43 171,990.57 119,360.71 59,570.43 40,866.29 19,093.60
RMSE 547.64 441.00 414.72 345.49 244.07 202.15 138.18
MAE 470.29 372.86 346.29 303.00 213.57 196.29 123.29
MASE 0.91 0.72 0.67 0.59 0.41 0.38 0.24
Raipur Training Set MSE 885.20 634.56 501.23 310.67 272.52 86.28 56.80
RMSE 29.75 25.19 22.39 17.63 16.51 9.29 7.54
MAE 18.57 15.42 14.05 11.51 9.72 5.82 4.66
MASE 0.74 0.63 0.58 0.45 0.40 0.24 0.19
Testing Set MSE 1569.00 1108.14 891.14 553.57 402.71 308.57 108.29
RMSE 39.61 33.29 29.85 23.53 20.07 17.57 10.41
MAE 35.57 30.43 26.86 15.57 17.86 14.57 8.29
MASE 0.50 0.43 0.38 0.22 0.25 0.21 0.12
Chinsurah Training Set MSE 2380.55 2065.50 1810.82 1415.25 810.03 585.32 379.02
RMSE 48.79 45.45 42.55 37.62 28.46 24.20 19.47
MAE 9.89 17.60 15.59 14.34 9.89 8.88 8.19
MASE 0.13 0.24 0.21 0.20 0.13 0.12 0.11
Testing Set MSE 2999.18 2308.33 1946.41 1627.14 1418.00 1024.40 554.79
RMSE 54.76 48.05 44.12 40.34 37.70 32.00 23.55
MAE 52.86 44.43 39.71 36.00 33.71 29.14 20.57
MASE 1.97 1.66 1.48 1.34 1.26 1.09 0.77

improvements are seen in Pattambi, Raipur, and Chinsurah, with re-
ductions ranging from 46.9 % to 75.8 %. For Dataset 2, the ZINBAR-ANN
model achieves error reductions of up to 75.6 % in training and 67.8 %
in testing compared to the INGARCH model, with consistent results
across locations. At the Rajendra Nagar Centre, the ANN model also
showed substantial error reductions compared to the INGARCH and
ZIPAR models, especially in Dataset 1, where it reduced errors by 71.1 %
in training and 60.0 % in testing. However, the ANN model showed
smaller improvements compared to the ZINBAR model, particularly
during testing, with reductions of 23.0 % for Dataset 1 and 29.5 % for
Dataset 2. These results emphasize the strong performance of the pro-
posed two stage ZINBAR-ANN model, especially compared to classical
models.

Along with the MSE and RMSE, the study also incorporates two
additional measures, MAE and MASE. The MAE provides a direct mea-
sure of the average magnitude of forecasting errors, expressed in the
same units as the original data, making it easy to interpret and compare
across models. In the present analysis, the proposed ZINBAR-ANN
hybrid model consistently provided the lowest MAE values across all
locations and data splits, both in training and testing phases. For
example, in the testing set for Warangal, the MAE drops significantly
from 29.43 (INGARCH) to 8.00 (ZINBAR-ANN), while in Pattambi, the
reduction is even more substantial from 470.29 to 123.29 for data set 1.
Similar trends are observed in other locations such as Raipur and
Chinsurah, demonstrating the hybrid model’s effectiveness in reducing
forecasting error. The same pattern holds for dataset 2 as well.

The MASE metric further enhances interpretability by scaling the
error against that of a naive forecast model, which assumes that the
forecast at time t equals the observed value at time t-1. A MASE value
below 1 indicates that the proposed model outperforms the naive
benchmark. Across all study locations, the ZINBAR-ANN model consis-
tently records MASE values well below 1, mostly below 0.5, highlighting
its robust predictive performance. For instance, in Warangal (testing),
the MASE decreases from 1.40 (INGARCH) to 0.38 (ZINBAR-ANN); in
Raipur, it improves from 0.50 to 0.12; and in Pattambi, from 0.91 to 0.24
for data set 1. Similar results were observed for dataset 2. These results
confirm that the ZINBAR-ANN model not only reduces absolute fore-
casting error but also generalizes better across different datasets and
locations. Hence, the inclusion of MAE and MASE provides a more
comprehensive and scalable evaluation, reinforcing the superiority of
the hybrid model in predicting complex zero-inflated, over dispersed
pest count data.

However, these comparison criteria only show the differences be-
tween the observed and predicted values of the models. Therefore, the
Diebold-Mariano (DM) test was employed to assess the statistical sig-
nificance of the differences in model performance. While absolute
metrics quantify the magnitude of forecast errors, they do not indicate
whether one model performs significantly better than another in a sta-
tistical sense. The DM test addresses this limitation by comparing the
forecast errors of two models over time, testing the null hypothesis that
both models have equal predictive accuracy. The results for both Dataset
1 and Dataset 2 (Supplementary Tables ST34 and ST35) clearly

10
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Fig. 4. Actual vs. fitted plots of YSB populations for data set 1 depicting a) Warangal, b) Rajendra Nagar, c) Pattambi, d) Raipur and e) Chinsurah.
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demonstrate that the ZINBAR-ANN hybrid model (M7) significantly
outperforms not only the individual models (INGARCH, ZIPAR, ZINBAR,
ANN) but also the other hybrid models (INGARCH-ANN, ZIPAR-ANN)
across almost all centres and model pairings. For instance, in War-
angal (Dataset 1), the DM statistic for M1 vs. M7 is 7.56 (p < 0.001), and
in Raipur, it is 5.24 (p < 0.01), indicating strong evidence against the
null hypothesis. Similarly, in Dataset 2, the M1 vs. M7 comparisons
show highly significant values across centres, such as 6.62 in Warangal
and 5.79 in Raipur (both p < 0.0001). Even when comparing M6
(ZIPAR-ANN) with M7 (ZINBAR-ANN), significant DM statistics are
observed (for example, 3.65 in Pattambi and 3.84 in Raipur), indicating
that ZINBAR-ANN consistently provides superior forecasts even among
hybrid competitors. An exception is seen in Rajendra Nagar, where the
ANN model (M4) occasionally outperforms others, aligning with earlier
findings. Overall, the consistently significant DM test results underscore
the robustness and statistical superiority of the proposed ZINBAR-ANN
model in forecasting complex, overdispersed, and nonlinear count
time series data.

Several studies have reported that hybrid two-stage models and
machine learning models perform better than classical models. How-
ever, these studies are not specifically related to count time series
models. For instance, [35] modeled and forecasted rice gall midge
populations using count and machine learning models and found that
machine learning approaches outperformed the classical count time
series INGARCH model. Similarly, hybrid models demonstrated superior
performance in forecasting rainfall [45], predicting rice yield [46], and
forecasting temperature [47,48]. In addition, two-stage hybrid models
have shown effectiveness in credit risk assessment [49], short-term wind
direction forecasting [50], and measuring the sustainable performance
of the Indian retail chain. Furthermore, diagnostic checks on the re-
siduals obtained from the INGARCH, ZIPAR, ZINBAR, ANN,
INGARCH-ANN, and ZIPAR-ANN models showed that they were
non-autocorrelated and non-random, indicating that the models under
consideration were adequate. The proposed two stage ZINBAR-ANN
approach was effective in modeling over-dispersed count data,
addressing challenges like excess zeros, which commonly observed in
light trap count data and results in over dispersion, which simpler
models like Poisson often struggle to handle. The ANN component excels
at capturing non-linear relationships, learning from the residual patterns
left after fitting the ZINBAR model, allowing it to detect more complex
and heterogeneous patterns that a simple count model may overlook.

YSB is a serious insect pest of rice inflicting significant crop loss
across the Indian sub- continent. It is a monophagous insect with an
interesting reproductive biology. The female moths start laying eggs
next day of its first appearance in the season, for 1-2 days. The eggs
hatch in 7-8 days [51,52] and the neonate larvae enter inside the rice
plant within 35 min and remain inside until the adult emergence. This
very behaviour makes YSB management challenging as it is protected
from the natural enemies and to chemical insecticides. Hence, the tactics
aimed at YSB management, especially the insecticides need to be
delivered during this narrow window of about 10-days, targeting the egg
stage and neonate larvae and thus making the ‘timing’ a critical factor.
In this scenario, the two-stage ZINBAR-ANN model because of its high
precision, as evidenced in this study will be of immense value in fore-
casting YSB population based on the weather data. An efficient fore-
casting model of YSB population in rice crop ecosystem will be a
precursor for developing an area wide forewarning system to dissemi-
nate advisories for the timely application of management tactics to avoid
yield losses by the YSB damage in rice crop.

5. Conclusion

In the current study, two-stage zero-inflated count time series models
were developed to predict the occurrence of the Yellow Stem Borer
(YSB) population using weather variables. Weather variables such as
maximum and minimum temperature, morning and evening relative
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humidity, rainfall, and sunshine hours were found to affect the occur-
rence of the rice YSB population. The classical count time series
INGARCH model fails to perform well when a significant proportion of
zeros occur in the population due to the non-occurrence of YSB in certain
Standard Meteorological Weeks (SMWs). In such cases, zero-inflated
models were found to be suitable alternatives.

The traditional count time series models, namely INGARCH, ZIPAR,
and ZINBAR, exhibited significant residuals after model fitting, indi-
cating that these models did not provide a satisfactory fit. To improve
forecasting accuracy, two-stage models were developed, where the sig-
nificant residuals were fitted using an Artificial Neural Network (ANN)
model. The proposed zero-inflated methodology was applied to both
kharif (dataset 1) and rabi (dataset 2) seasons, and it outperformed
classical models in both training and validation datasets. Additionally,
the percentage error reduction achieved by the ZINBAR-ANN strategy,
compared to classical and other models, indicated a substantial
improvement in forecasting accuracy. The methodology proposed in this
study aids in predicting the YSB population, enabling the proactive
implementation of preventive and curative pest management strategies.
This approach can, in turn, assist in planning strategies to reduce rice
yield loss due to the YSB pest. In the future, prediction models for
different crop pests can be developed using the proposed models and
tested with various combinations of count time series and machine
learning models.
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