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A B S T R A C T

The Yellow Stem Borer (YSB) (Scirpophaga incertulas Walker) is a major pest in rice agroecosystems, and timely 
prediction of its occurrence is crucial for effective management. This study considered data from 2013 to 2023 
from five YSB hotspot regions in India, namely Warangal, Rajendranagar, Pattambi, Raipur, and Chinsurah to 
develop a reliable forewarning model for predicting YSB populations using weather parameters. Daily YSB 
catches were recorded using light traps with 200 W incandescent bulbs, and various weather variables were also 
considered. Stepwise regression identified key weather parameters influencing YSB population density, including 
minimum and maximum temperatures, evening and morning relative humidity, sunshine hours, and rainfall. The 
study utilized weekly cumulative YSB populations and average climatological data as inputs to several count time 
series models, including the Integer-valued Generalized Autoregressive Conditional Heteroscedastic (INGARCH) 
model, Zero-Inflated Poisson Autoregressive (ZIPAR) model, Zero-Inflated Negative Binomial Autoregressive 
(ZINBAR) model, and the Artificial Neural Network (ANN), a machine learning model. Additionally, innovative 
two-stage hybrid models viz., INGARCH-ANN, ZIPAR-ANN, and ZINBAR-ANN were developed and evaluated. 
Classical count time series models, such as INGARCH, underperformed when a high proportion of zeros were 
observed due to the absence of YSB in certain Standard Meteorological Weeks (SMWs). Zero-inflated models 
were found to be better suited for such cases. Classical models showed significant residual patterns, indicating 
the need for model correction. To address this, hybrid models were constructed to normalize the residuals and 
enhance forecasting accuracy. Among all the models, the two-stage ZINBAR-ANN model outperformed the 
others, showing the lowest Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) across most lo
cations in both training and testing datasets for both rainy and post-rainy seasons. This innovative two-stage 
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zero-inflated hybrid modeling approach offers an effective early warning system for YSB population prediction, 
supporting sustainable and localized pest management strategies, and helping to mitigate rice yield losses.

1. Introduction

Rice is the most essential and widely consumed food crop in East and 
Southeast Asia. The importance of rice stretches beyond its nutritional 
value encompassing social, economic, and environmental benefits. India 
is among the world’s largest rice producing countries; however, sub
stantial yield loss due to the damage by insect pests such as the stem 
borers, plant hoppers, gall midge, etc. remains a major area of concern 
[1]. Post green revolution yellow stem borer (YSB) (Scirpophaga incer
tulas Walker) had emerged as one of the important pests throughout the 
India [1] inflicting around 20 % and 80 % yield losses in early and late 
planted crops respectively. The YSB larvae bore into the central stem 
leading to the production of dead tillers at the vegetative stage, popu
larly known as ‘dead heart’ and chaffy ear heads called as ‘white ears’ at 
reproductive stage (Fig. 1). Continuous flooding and application of high 
doses of nitrogenous fertilisers are known to be favourable for the 
population build-up of the stem borers [2]. In addition to natural 
reproductive potential of insect pests, abiotic factors play a major role in 
determining their abundance in a crop ecosystem, so, developing of 
effective statistical model-based early warning system to predict the 
growth of YSB population is crucial for designing and executing a pro
active, site-specific pest control and management strategy.

Count time series modelling is widely used to analyse discrete count 
data that exhibit autocorrelation, where the observations are usually 
assumed to follow Poisson or negative binomial distributions [3]. Crop 
pest modelling is a significant area of research in count time series 
modelling, where the focus is on daily or weekly counts of insects or 
pests that exhibit autocorrelation. While count time series models and 
ML methods have been successfully applied in various fields, their 
application in modelling and predicting YSB populations is relatively 
new and innovative. Traditional count time series models have been 
applied in various fields such as stock exchange data [4,5], monthly 
claims count of workers in manufacturing industry [6], monthly strike 
count time series [7], Campylobacterosis infections count time series 
[8–10] influenza activity prediction using Poisson-INGARCH model and 
dengue incidents prediction in Jakarta [11], as well as network traffic 
count time series [12]. In agriculture, crop pest prediction has been 
reviewed in [13], which explored both regression- and ML-based ap
proaches. Hybrid time series and ML models have also been developed 
for forecasting crop yields [14]. ML models have been employed in 
diverse agricultural applications, including banana yield forecasting 
[15], rice blast disease forecasting [16,17], rice pest prediction [18], 
early blight severity prediction in tomato crops [19], sugarcane borer 
disease prediction [20], rice yellow stem borer (YSB) forecasting in the 
Cauvery command area of Karnataka, India [21], and YSB population 
prediction using long short-term memory (LSTM) models [22].

The accurate prediction of YSB populations based on climatological 
parameters is crucial for the implementation of effective and preventive 

crop protection measures. However, previous attempts on forecasting 
insect pest populations relied mainly on multiple regression analysis and 
classical time series models. These methods have limitations while 
dealing with count data that follows Poisson and negative binomial 
distributions. Attempt to normalize this type of data does not always 
lead to accurate prediction models [23,24]. Moreover, in a dataset 
where a high proportion of zero counts are observed, even a traditional 
count model may underestimate the variance of the count data, leading 
to incorrect inference and predictions. Despite the generalised linear 
model (INGARCH) being better suited for count data, their ability to 
handle excess zeros in comparison with that of expected number of 
counts under a Poisson or negative binomial distribution is questionable 
[25]. These zeros can arise due to various reasons such as the presence of 
structural zeros (i.e., certain events cannot occur in certain time periods) 
or excess zeros (i.e., some events have a low probability of occurrence) 
[26]. To model such phenomena in an effective way, zero inflated 
models came into picture, where the probability of obtaining a zero 
count is modelled separately from the probability of obtaining non-zero 
counts. This is done by incorporating two components into the model: a 
binary component that models the probability of zero counts and a count 
component that models the distribution of non-zero counts. The binary 
component is usually modelled using logistic or a related model, which 
estimates the probability of a zero count. The count component is 
typically modelled using a Poisson or negative binomial model, which 
estimates the distribution of non-zero counts. Zero-inflated models have 
applications in various fields, including epidemiology, ecology, finance, 
and social sciences [27–31].

Crop pest modelling is a significant application in this field, where 
daily or weekly pest counts serve as dependent variable and corre
sponding weather variables such as temperature, rainfall, relative hu
midity, sunshine hours etc. as exogenous variables. In dealing with 
complex zero-inflated datasets, a parametric model may not be sufficient 
to adequately capture the population dynamics. ML models such as ANN 
is useful in situations when it is data-driven and devoid of any stringent 
model assumptions. Moreover, if the residuals of a fitted linear model 
reveal significant autocorrelation pattern, sequential implementation or 
hybridization of two models are likely to result superior forecast than its 
component models [32,33].

This study develops a reliable statistical model for predicting YSB 
populations by utilizing count time series and machine learning ap
proaches based on climatic input parameters that directly influence the 
life cycle of YSB. It marks the first attempt to introduce a two-stage 
modeling framework that integrates a zero-inflated model with an 
artificial neural network (ANN), using weather variables for insect pest 
modeling in agriculture, thereby extending the application of ML tech
niques in forecasting pest populations. Furthermore, this work attempts 
to combine zero inflated models such as zero inflated Poisson autore
gressive (ZIPAR) model and zero inflated Negative Binomial 

Fig. 1. (a) larva YSB (b) adult YSB (c) symptoms of YSB infected rice.
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autoregressive (ZINBAR) model along with ANN for YSB population 
prediction.

The methodological framework begins with basic descriptive statis
tics, correlation and stepwise regression analysis to explore the causal 
relationships between YSB populations and weather variables. 
Advanced computational methods, such as INGARCH, ZIPAR, ZINBAR, 
ANN, INGARCH-ANN, ZIPAR-ANN and ZINBAR-ANN are developed to 
model and forecast YSB populations in hot spot regions of India.

2. Materials and methods

2.1. Data collection

Light trap data on YSB populations from five hotspot locations in 
India (Warangal, Rajendra Nagar, Pattambi, Chinsurah, and Raipur) 
(Fig. 2) were utilized for modeling. The data were generated under the 
All India Coordinated Research Project on Rice (AICRPR) entomology 
program across years. YSB moths were trapped using Robinson type 
light traps fitted with 200 W incandescent bulbs, which were illumi
nated daily from 6:00 pm to 6:00 am. Moths were collected each 

Fig. 2. Study area of YSB pest population.
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morning and counted manually. Corresponding daily weather data on 
MAXT, MINT, RF, MRH, ERH, and SSH were obtained from automatic 
weather stations at the respective locations. Standard Meteorological 
Week (SMW) wise cumulative YSB moth catches and weekly mean 
weather parameters during the past 11 years (2013–2023) were 
considered for modeling.

As the YSB occurs in both the rainy (Kharif) and post-rainy (Rabi) 
season crop of rice with discernible population peaks, the data were 
apportioned into two sets namely, data set 1 and data set 2 for rainy and 
post rainy seasons respectively. For data set 1, the first 525 observations 
were used as the training data set for model building and the last 7 
weeks’ observations were used as testing data set for validation pur
poses. Similarly, for data set 2, the first 555 observations and the last 10 
weeks’ observations were used as the training and the validation 
(testing) data set, respectively.

2.2. Statistical models

To understand the nature of the data descriptive statistics viz., mean, 
standard error (SE), skewness, kurtosis, minimum, maximum, and co
efficient of variations (CV) were estimated. Graphical depiction of data 
with time series plots was done. Stepwise correlation analysis preceded 
by Pearson’s correlation analysis was performed for understanding the 
relationship between the YSB population and exogenous weather vari
ables. The time series plots, INGARCH, ANN and two stage models were 
developed in R software [34].

2.2.1. INGARCH (Integer valued generalized autoregressive conditional 
heteroscedastic) model

INGARCH model is a special case of generalised linear model (GLM), 
where the conditional distribution of dependent variable assumed to 
follow popular discrete distributions like Poisson, negative binomial, 
generalised Poisson and double Poisson distributions [35]. Let us denote 
the count time series by {Yt : t ∈ N} and time varying r-dimensional 
covariate vector say {Xt : t ∈ N} i.e. Xt =

(
Xt,1...,Xt,r

)T . The conditional 

mean becomes E
(

Yt
Ft− 1

)

= λt and Ft is historical data.

The generalised model form is expressed as follows: 

g(λt) = βo +
∑p

k=1

αkg̃
(
Yt− ik

)
+
∑q

l=1

β1g
(
λt− jl
)
+ ηT (1) 

Case 1: Consider the situation where g and ̃g are equal to identity i.e., 
g(x)= g̃(x) = x, further, Yt follows (Poisson) INGARCH (p, q) model with 
p>1 and q≤ 0 if 

a) Yt conditioned on Yt− 1,Yt− 2, …, is poison distributed

b) The conditional mean λt = E
(

Yt
Yt− 1,Yt− 2,...

)

satisfies 

λt = βo +
∑p

i=1
αiYt− i +

∑q

j=1
βjλt− j with βo > 0 and α1, .., αp, .., β1, .., βq

≥ 0
(2) 

Assuming further that Yt|Yt− 1 is Poisson distributed, then we obtain 
an INGARCH model of order p and q, abbreviated as INGARCH (p, q) 
model. If q = 0, the model can be referred as the INARCH(p) model.

Case 2: The Negative Binomial (NB) distribution allows for a con
ditional variance to be larger than the mean λt which is often referred to 
as over-dispersion parameter. It is assumed that Yt|Ft− 1~NB (λt, ∅). 
When ∅→∞. The Poisson distribution is a limiting case of the Negative 
binomial distribution by the assumption; 

Yt
Yt− 1,Yt− 2, ...

∼ B
(

n, β + αYt− 1

n

)

(3) 

Estimation through INGARCH model using conditional likelihood 
estimation, especially on the asymptotic properties, are given by [36,
37]. The INGARCHX model is an extended version of the INGARCH 
model, where future values of a variable depend on its past values and 
past values of exogenous variables.

2.2.2. Zero inflated Poisson Autoregressive (ZIPAR) model
Poisson regression is used to predict a dependent variable that con

sists of count data given one or more independent variables. The zero 
inflated Poisson autoregressive (ZIPAR) model is expressed as follows 
[38]: 

pr(Yi = j) = π + (1 − π)exp(− μ), if j = 0 (4) 

The Poisson distribution is described as follows 

(1 − π) μyexp(− μ)
yi

, if j > 0 (5) 

Where, yi is the logistic link function defined below. The Poisson 
component can include an exposure time t and a set of k regressor var
iable. the expression relating these quantities is 

μi = exp(ln(ti) + β1x 1i + β2x2i + ...+ βkx ki ) (6) 

Often, x1 = 1, in which case β1 is called the intercept, the regression 
coefficients β2, β3,…, βk are unknown parameters that are estimated 
from a set of data and their estimates are symbolised as b1, b2 …. bk . This 
logistic link function πi is given by 

πi =
λi

1 + λi
(7) 

Where, λi = exp (ln (ti) + y1z1i + y2z2i + ...+ ymzmi)

The logistic component includes time t and a set of m regressor 
variables.

2.2.3. Zero inflated negative binomial autoregressive (ZINBAR) model
The zero inflated negative binomial regression is used for count data 

that exhibit over dispersion and excess zeros. The data distribution 
combines the negative binomial distribution and the logit distribution 
[39,40] The possible values of y are the non-negative integers: 0, 1, 2, … 

Pr (yi = j) =
{

πi + (1 − πi)g(yi = 0) if j = 0
(1 − πi)g(yi) if j > 0 (8) 

Where, πi is the logistic link function defined below and g(yi) is the 
negative binomial distribution given by 

g(yi) = Pr(Y = yi|μi, α) =
Γ(yi + α− 1)

Γ(α− 1) Γ(yi + 1)

(
1

1 + αμi

)

α− 1
(

αμi

1 + αμi

)

yi

(9) 

The negative binomial component can include an exposure time t 
and a set of k regressor variable. The expression related to these quan
tities is 

μi = exp
(
ln(ti)+β1x1i +β2x 2i + ...+βkx ki +ϕ1Yi − 1 +ϕ2Yi − 2 + ... +ϕpYi − p

)

(10) 

Often, x1 = 1, in which case β1 is called the intercept, the regression 
coefficients β2, β3,…, βk are unknown parameters that are estimated 
from a set of data and their estimates are symbolised as b1, b2 …. bk.

2.2.4. Artificial neural network model (ANN)
ANN is mostly used model among the machine learning techniques. 

ANNs are non-linear, nonparametric and self-adaptive approaches as 
opposed to the model-based non-linear methods. Neural networks are 
composed of layers of neurons where each layer receives input from the 

B.N.K. Reddy et al.                                                                                                                                                                                                                             Smart Agricultural Technology 12 (2025) 101381 

4 



previous layer and passes the output to the next layer.
The general expression for the final output Yt of a multi-layer feed 

forward autoregressive neural network is expressed as follows: 

Yt = α0 +
∑q

j=1
αjg

(

β0j +
∑p

i=1
βijYt− i

)

+ εt (11) 

Where, αj(j= 0, 1, 2, . . ., q) and βij (i= 0, 1, 2, . . ., p, j = 0, 1, 2, . . ., q)
are the model parameters, also called as the synopsis weights, p is the 
number of input nodes, q is the number of hidden nodes, and g is the 
activation function. Training part in ANN minimises the error function 
between actual and predicted values. The error function of autore
gressive ANN is expressed as follows: 

E =
1

N − p
∑n

i=t
(et)

2

=
1

N − p
∑N

t=p+1

[

Yt −

{

α0 +
∑q

j=1
αjg

(

β0j +
∑p

i=1
βijYt− i

)}]2

(12) 

Where, N is the total number of error terms.

2.2.5. Proposed two stage modelling
The rationale for selecting the Zero-Inflated Negative Binomial 

Autoregressive (ZINBAR) model lies in its ability to handle over 
dispersed count data with excess zeros, which are common in pest and 
disease time series [25,39]. Classical models such as Poisson-INGARCH 
assume equi-dispersion and are often inadequate in capturing both the 
excess zeros and the temporal dependency structure [4]. Furthermore, 
while ZINBAR captures the statistical structure of zero-inflated, auto
correlated count data, it may fall short in modeling non-linear patterns 
and complex interactions [40]. This is where Artificial Neural Networks 

(ANNs) are beneficial, as they excel in capturing hidden non-linear de
pendencies and adapt to irregularities in input-output relationships. The 
hybrid ZINBAR-ANN framework integrates the strengths of both para
digms: the probabilistic rigor of ZINBAR for zero-inflation and auto
correlation, and the flexibility of ANN for non-linearity. This 
hybridization has demonstrated improved predictive accuracy in 
modeling time series with structural zeros. The proposed two stage 
modelling in this work considers the time series Yt as a combination of 
both auto-correlated original time series and significant residuals of the 
model. This approach follows the Zhang’s [41] hybrid approach, 
accordingly the relationship between auto-correlated count time series 
and significant residuals were considered. In this work, the 
auto-correlated count time series were modelled using INGARCH, ZIPAR 
and ZINBAR models (Stage-I) and significant residuals were modelled 
using ANN model (Stage II).

The proposed methodology consists of two steps. Firstly, an 
INGARCH, ZIPAR and ZINBAR models were employed to model the 
count time series data. In the second step, if the residuals obtained from 
INGARCH, ZIPAR and ZINBAR models were found (Stage II) to be sig
nificant by Box pierce test and nonlinear by the BDS (Brock-Dechert- 
Scheinkman) test, then they were modelled and predicted using the ANN 
model. Finally, the forecasted values from stage 1 and stage 2 compo
nents were combined to generate aggregated forecasted values. The 
schematic representation of proposed methodology is depicted in Fig. 3. 

Ŷ t = Ŝ1 + Ŝ2 (13) 

Where, Ŝ1 and Ŝ2 represent the predicted count time series (stage I) 
and predicted significant residual components (stage II), respectively.

Fig. 3. Schematic representation of proposed two stage methodology.
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2.3. Comparison criteria

2.3.1. MSE and RMSE
The mean squared error (MSE) and root mean square error (RMSE) 

are the two criteria used to measure model accuracy in this study. MSE 
measures error in statistical models by calculating the average squared 
difference between observed and predicted values. 

MSE =
1
n
∑n

i=1
(Yi − Ŷ i)

2 (14) 

Where, n is number of data points, Yi and Ŷ i are the observed and 
predicted values, respectively. RMSE is the square root of the mean of 
the square of all the errors.

2.3.2. MAE
Mean Absolute Error (MAE) measures the average absolute differ

ence between the predicted and actual values. It is a scale-dependent 
metric but is widely used due to its simplicity and interpretability. 

MAE =
1
n
∑n

t=1
|yt − ŷt | (15) 

Where, yt is actual observed value at time t, ŷt is predicted value at 
time t and n is the total number of observations

2.3.3. MASE
Mean Absolute Scaled Error (MASE) is a scale-independent metric 

proposed by [42] for evaluating forecast accuracy. It is calculated by 
dividing the MAE of the forecasting model by the MAE of a naïve 
one-step lag model. 

MASE =
1
n
∑n

t=1|yt − ŷt |
1

n− 1
∑n

t=2|yt − yt− 1|
(16) 

In this formula, the numerator represents the Mean Absolute Error 
(MAE) of the proposed forecasting model, reflecting the average abso
lute difference between the predicted and observed values. The de
nominator corresponds to the MAE of the naïve one-step lag model, 
which assumes that the forecast at time t is equal to the observed value at 
time t-1 i.e., ŷt = yt− 1. This naïve model serves as a basic benchmark, 
and by scaling the model’s MAE against it, MASE provides a standard
ized measure of forecast accuracy. A MASE value less than one indicates 
that the model outperforms the naïve approach, while a value greater 
than one suggests inferior performance.

2.4. Diebold–Mariano test

The Diebold–Mariano (DM) test is used to determine whether the 
two forecasts are significantly different or not [43]. Let ei and ri be the 
residuals for the two forecasts; 

ei = yi − fi (17) 

ri = yi − gi (18) 

Let di be defined as di = e2
i − r2

i or di = |ei| − |ri| (19) 

The time series di is called the loss-differential. Clearly, the first of 
these formulas are related to the MSE metric and the second is related to 
the MAE metric. We now define: 

d =
1
n
∑n

i=1
di, μ = E[di] (20) 

For n > k ≥ 1, define γ̂k =
1
n
∑n

i=k+1
(di − d)(di− k − d) (21) 

γk is the autocovariance at lag k. For h ≥ 1, Diebold-Mariano statistic 

is defined as follows: 

DM =
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
γ̂0 + 2

∑h− 1
k=1γk

]/
n

√ (22) 

It is generally sufficient to use the value h = n1/3 + 1. Under the 
assumption that μ = 0 (the null hypothesis), DM follows a standard 
normal distribution i.e., DM ~ N (0, 1). Thus, there is a significant dif
ference between the forecasts if, DM ≥ Zcrit , where Zcrit is the two-tailed 
critical value for the standard normal distribution. The key assumption 
for using the DM test is that the loss differential time series di is 
stationary.

3. Results

The time series plots of weekly counts of YSB light trap catches of five 
study sites during the study period were plotted in Fig. SF1. The time 
series plots showed that at all examined locations, the YSB incidence was 
higher between the 35th to 45th standard meteorological weeks 
(SMWs), except at the Pattambi and Chinsurah centres, where it showed 
between the 20th to 30th SMWs. At the Rajendra Nagar centre, it 
showed two peaks, between 1st to 10th and the 35th to 45th SMWs. 
Summary statistics of the yellow stem borer population and exogenous 
weather variables were presented in supplementary Tables ST1 and ST2, 
respectively. In most of the centres, the YSB count and the weather 
variables were highly skewed and leptokurtic in nature. The coefficient 
of variation of YSB were of highly heterogeneous in nature.

The Pearson correlation coefficients between YSB populations and 
the weather variables are presented in Supplementary Table ST3. YSB 
population was having a significantly low positive correlation with that 
of sunshine hours (SSH) at the Warangal, Rajendra Nagar, and Pattambi 
centres. Similarly, a low significant correlation was found between YSB 
populations and maximum temperature (MAXT) at the Raipur centre. 
Additionally, a low significant correlation was observed between YSB 
populations and MAXT, minimum temperature (MINT), and evening 
relative humidity (ERH) at other centres. However, at Warangal, the 
correlation between YSB populations and both MAXT and MINT was 
significantly negative. In Raipur, the correlation between YSB pop
ulations and ERH as well as rainfall (RF) was also significantly negative. 
At the Pattambi centre, a significant negative correlation was found 
between YSB populations and both MINT and RF. Supplementary 
Table ST3 provides a clear representation of the relationships between 
YSB populations and the various weather variables.

To identify the climatological factors influencing the incidence of the 
YSB population, a stepwise regression analysis was conducted, and the 
results are shown in Supplementary Table ST4. The MINT, SSH, and RF 
at Warangal; SSH and RF at Rajendra Nagar; RF, MINT, MAXT, and ERH 
at Pattambi; ERH at Raipur; and MAXT, MINT, and RF at Chinsurah were 
found to significantly contribute to the YSB population. However, the R² 
values for the fitted regression models at all five centres were low, 
indicating a poor fit. This may be attributed to the presence of non-linear 
and highly heterogeneous relationships among the variables.

3.1. Results of INGARCH models

Box-Pierce non-correlation test indicated that the data under 
consideration were auto-correlated (p<0.0001) in nature. As a next step, 
the INGARCH model with exogenous climatological variables were 
fitted and the model summaries for the five centres for data set 1 were 
presented in Table 1 (for data set 2, refer to Supplementary Table ST5). 
Even though the coefficients of the lagged observations were found to be 
significant, effect of no climatological parameters were significant. 
Moreover, diagnostic checking of residuals by the Box-Pierce non-cor
relation test revealed that the residuals were auto-correlated (p<
0.0001) in nature.
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3.2. Results of ZIPAR models

The ZIPAR models with 5 lags were chosen based on the lowest AIC 
(Akaike Information Criterion) and BIC (Bayesian Information Crite
rion) values. The parameter estimates of ZIPAR models for all five 
centres for data set 1were represented in Table 2 (for data set 2, refer to 
Supplementary Table ST6). Most of the parameter estimates are non- 
significant and residuals shows significance as the probability of Box- 
Pierce non-correlation was less than 0.05, indicates residuals under 
consideration are significant for all the centres except for Rajendra 
Nagar where residual probabilities are non-significant as probability is 
more than 0.05 for both data set 1 and data set 2.

3.3. Results of ZINBAR models

The ZINBAR models with 5 lags were chosen on the basis of the 
lowest AIC and BIC values. The parameter estimates of the ZINBAR 
models for all the five centres for data set 1 were represented in Table 3
(for data set 2, refer to Supplementary Table ST7). Majority of the 
parameter estimates are non-significant, while the residuals are signif
icant, as indicated by the Box-Pierce test, with non-correlation proba
bilities below 0.05. This means the residuals are significant for all 
centers except Rajendra Nagar, where the residual probabilities exceed 

0.05, making them non-significant for both data set 1 and data set 2.

3.4. Results of ANN models

The sigmoidal and linear activation functions were used in the input 
to hidden layer and in hidden to output layer, respectively. The weather 
variables namely MAXT, MINT, MRH, ERH, SSH and rainfall, were also 
used as exogenous variables in input layer. The suitable candidate 
models were chosen based on lowest MSE and RMSE values. Table 4
showed the specifications of the selected ANN models (for data set 2, 
refer to Supplementary Table ST8). After fitting of the models, the 
diagnostic checking of the residuals was carried out by Box- Pierce non- 
correlation test and found that the residuals were non-correlated in 
nature.

3.5. Two stage modelling and forecasting

The first step in the two stage model building process was to obtain 
the predicted and the residual values from the INGARCH, ZIPAR and 
ZINBAR models. In the next step, the presence of autocorrelation in the 
residuals of fitted models was tested along with nonlinearity. After 
confirmation of the presence of autocorrelation and non-linear structure 
in the residual series of all the study locations except Rajendra Nagar, 

Table 1 
Parameter estimates of INGARCH models for the study centres for data set 1.

Parameters Estimate Std. error Z value Pr(>|z|) Box-Pierce non-correlation test for residuals

Warangal Intercept 5.00 14.1 0.38 0.70 ​
beta_4 0.5 0.11 4.62 <0.001 ​
alpha_4 0.2 0.12 2.02 0.04 ​
MAXT <0.0001 0.42 0.00 0.99 χ2 = 132.07
MINT <0.0001 0.50 0.00 1.00 (p< 0.0001)
RF 0.06 0.08 0.68 0.49 ​
MRH 0.0001 0.19 0.00 0.99 ​
ERH 0.02 0.18 0.10 0.91 ​
SSH 0.12 0.08 1.42 0.15 ​

Rajendra 
Nagar

Intercept 1.08 0.2 0.49 0.62 ​
beta_2 0.13 0.96 1.37 0.16 ​
alpha_2 0.46 0.34 1.36 0.17 χ2 = 0.003 (p = 0.92)
MAXT <0.0001 0.67 0.005 1 ​
MINT <0.0001 0.78 0.002 1 ​
RF 0.10 0.15 0.63 0.52 ​
MRH 0.64 0.25 0.03 0.97 ​
ERH <0.0001 0.21 0.00 1 ​
SSH 0.02 0.08 0.29 0.77 ​

Pattambi Intercept 205 653 0.314 0.753 ​
beta_2 0.51 0.188 2.731 0.006 ​
alpha_2 <0.0001 0.175 0.051 0.959 χ2 = 119.6 (p<0.001)
MAXT <0.0001 0.113 0.000 1 ​
MINT 0.198 8.26 0.002 0.998 ​
RF 0.172 0.46 0.370 0.711 ​
MRH <0.0001 5.7 0.001 0.999 ​
ERH 0.064 2.47 0.026 0.979 ​
SSH 0.001 0.008 0.23 0.63 ​

Raipur Intercept 1.83 2.31 0.79 0.42 ​
beta_2 0.29 0.67 4.36 <0.001 ​
alpha_2 0.65 0.8 8.13 <0.001 ​
MAXT <0.0001 0.2 0.005 1 χ2 = 126.18 (p<0.001)
MINT <0.0001 0.27 0.003 1 ​
RF <0.0001 0.56 0.01 0.99 ​
MRH <0.0001 0.6 0.002 0.99 ​
ERH 0.23 0.8 0.28 0.77 ​

Chinsurah Intercept <0.0001 2.66 0.00 1.00 ​
beta_2 0.43 0.13 3.23 0.001 ​
alpha_2 0.18 0.14 1.28 0.20 ​
MAXT 0.2 1.9 0.11 0.92 χ2 = 150 (p<0.001)
MINT 2.7 1.82 1.51 0.13 ​
RF <0.0001 0.27 0.007 1.00 ​
MRH <0.0001 0.22 0.005 1.03 ​
ERH <0.0001 0.54 0.001 0.3 ​
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the ANN model was used for modelling and forecasting of the INGARCH, 
ZIPAR and ZINBAR residuals for the rest four centres. The residuals 
predicted from the ANN were then combined with the predicted values 
obtained from the INGARCH, ZIPAR, and ZINBAR models. The results of 
the BDS test of the fitted model residuals for datasets 1 and 2 are pre
sented in Supplementary Tables ST9 and ST10, respectively

3.5.1. Results of INGARCH-ANN models
After validating autocorrelation by Box-Pierce test (Table 1 and 

Supplementary Table ST5) and nonlinearity by the BDS test (Supple
mentary Table ST9 and ST10), the same residuals were modelled using 
ANN model along with exogenous weather varaibles. Further, the pre
dicted residuals were combined with the forecasts obtained from orig
inal INGARCH model. This modeling procedure is called as INGARCH- 
ANN two stage count time series methodology. Supplementary 
Tables ST11 and ST12, showed the specifications of the selected ANN 
models for INGARCH residuals for data set 1 and 2, respectively. After 
fitting of the model, the diagnostic checking of the residuals by Box- 
Pierce test showed that residuals were non-correlated in nature.

3.5.2. Results of ZIPAR-ANN models
Similar to the INGARCH-ANN two stage count time series method

ology, the significant residuals of ZIPAR (Table 2 and Supplementary 
Table ST6) were modelled using ANN model along with exogenous 
weather varaibles as the residuals were nonlinear (Supplementary 
Table ST9 and ST10). Further, the forecasted residuals were combined 
with the forecasts obtained from original ZIPAR model. This modeling 
procedure is called as ZIPAR-ANN two stage count time series method
ology. Supplementary Tables ST13 and ST14, showed the specifications 
of the selected ANN models for ZIPAR residuals for data set 1 and 2, 
respectively. Diagnostic checking of the residuals of ZIPAR-ANN meth
odology were also found to be non-correlated.

3.5.3. Results of ZINBAR-ANN models
Similarly, in ZINBAR-ANN two stage count time series methodology, 

once the autocorrelation (Table 3 and Supplementary Table ST8) and 
nonlinearity of ZINBAR residuals (Supplementary Tables ST9 and ST10) 
were confirmed, the residuals were modelled using ANN model along 
with exogenous weather varaibles. Further the fitted residuals were 
combined with the predicted values obtained from original ZINBAR 
model. Supplementary Tables ST15 and ST16, showed the specifications 
of the selected ANN models for ZINBAR residuals for data set 1 and 2, 
respectively. The diagnostic checking of the residuals also confirmed the 
non-existence of autocorrelation structure.

4. Discussion

Prior to developing the proposed forewarning models, the cause-and- 
effect relationship between Yellow Stem Borer (YSB) populations and 
weather variables were analysed. Stepwise regression analysis revealed 
that minimum temperature, maximum temperature, rainfall, sunshine 
hours, and morning and evening relative humidity significantly influ
ence the occurrence of YSB populations. It was observed that different 
weather variables have varying effects on the YSB population across 
different centres. A detailed estimation of the parameters and their 
significance is provided in Supplementary Tables ST4. These findings 
align with the results reported by [44].

The comparative assessment of different models employed models in 
terms of MSE and RMSE values for data set 1 were presented in Table 5
for both training and testing sets (for data set 2, refer to Supplementary 
Tables ST17). In the INGARCH and ANN models, weather variables were 
directly incorporated as exogenous variables. For ZIPAR and ZINBAR 
models, weather data were also treated as exogenous variables, but with 
an additional step; significant residuals of the ZIPAR and ZINBAR 
models were fitted as exogenous variables. When building the ANN 
models for these residuals, the weather variables were used as 

Table 2 
Parameter estimates of the ZIPAR models for the study centers for data set 1.

Parameter P (Y>0) P(Y=0) Box-Pierce non correlation test for residuals

Estimate Std. Error Z value Pr(>|z|) Estimate Std. Error Z value Pr(>|z|)

Warangal
Intercept 2.70 0.01 163.64 <0.0001 0.33 0.22 1.50 0.134 χ2 = 9.08 

p = 0.03ysb_lag1 0.01 0.0002 42.71 <0.0001 -0.60 0.11 -5.32 <0.0001
ysb_lag2 0.002 0.0003 7.57 <0.0001 -0.01 0.03 -0.43 0.664
ysb_lag3 0.003 0.0003 8.45 <0.0001 0.01 0.03 0.40 0.693
ysb_lag4 0.002 0.0003 7.64 <0.0001 0.003 0.02 -0.17 0.862
ysb_lag5 0.001 0.0003 2.57 0.01 0.01 0.01 0.54 0.591

Rajendra Nagar Intercept 3.01 0.01 210.84 < 0.001 0.65 0.18 3.63 0.0002 χ2 = 0.002 
p = 0.91ysb_lag1 0.004 <0.001 54.82 < 0.001 -0.37 0.06 -5.79 <0.001

ysb_lag2 0.002 <0.001 23.28 < 0.001 0.05 0.02 2.83 0.004
ysb_lag3 <0.001 <0.001 2.84 0.004 -0.08 0.03 -2.65 0.008
ysb_lag4 0.001 <0.001 12.66 < 0.001 0.02 0.01 2.05 0.04
ysb_lag5 0.0017 <0.001 16.75 < 0.001 -0.01 0.01 -1.45 0.14

Pattambi
Intercept 4.65 0.066 699.1 <0.001 -1.45 0.001 -8.74 <0.001 χ2 = 9.4 

p= 0.02ysb_lag1 <0.0001 <0.0001 510.46 <0.001 -0.001 0.001 -0.8 0.42
ysb_lag2 <0.0001 <0.0001 193.87 <0.001 -0.004 0.003 -1.19 0.23
ysb_lag3 <0.0001 <0.0001 -65.25 <0.001 0.002 0.002 1.11 0.26
ysb_lag4 <0.0001 <0.0001 150.27 <0.001 -0.007 0.003 -0.02 0.97
ysb_lag5 <0.0001 <0.0001 89.16 <0.001 -0.004 0.003 -1.44 0.15

Raipur
Intercept 4.65 0.066 699.1 <0.001 -1.45 0.001 -8.74 <0.001 χ2 = 1.54 

p = 0.21ysb_lag1 <0.0001 <0.0001 510.46 <0.001 -0.001 0.001 -0.8 0.42
ysb_lag2 <0.0001 <0.0001 193.87 <0.001 -0.004 0.003 -1.19 0.23
ysb_lag3 <0.0001 <0.0001 -65.25 <0.001 0.002 0.002 1.11 0.26
ysb_lag4 <0.0001 <0.0001 150.27 <0.001 -0.007 0.003 -0.02 0.97
ysb_lag5 <0.0001 <0.0001 89.16 <0.001 -0.004 0.003 -1.44 0.15

Chinsurah
Intercept 4.5 0.52 869.4 <0.001 -2.416 0.534 -4.53 <0.001 χ2= 4.6 

p = 0.03ysb_lag1 0.13 <0.0001 270.4 <0.001 -0.090 0.031 -2.92 0.003
ysb_lag2 1.57 <0.0001 20.9 <0.001 0.020 0.007 2.79 0.005
ysb_lag3 <0.0001 <0.0001 3.4 0.0597 -0.003 0.003 -0.94 0.34
ysb_lag4 <0.0001 <0.0001 12.3 <0.001 0.004 0.002 1.68 0.092
ysb_lag5 <0.0001 <0.0001 40.5 <0.001 0.002 0.002 1.11 0.26
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independent variables in the input layer, while the residuals were 
considered as the dependent variables. This adjustment was made to 
simplify the model-building process by indirectly accounting for 
weather information in the modelling phase.

Among the models studied, the ZINBAR-ANN model outperformed 
the INGARCH, ZIPAR, ZINBAR, INGARCH-ANN, and ZIPAR-ANN 
models in both training and testing datasets, as indicated by its lowest 
MSE and RMSE values in both data set 1 and 2. The performance hier
archy of these models can be represented as follows: ZINBAR-ANN >
ZIPAR-ANN > INGARCH-ANN > ANN > ZINBAR > ZIPAR > INGARCH, 
across all study locations except the Rajendra Nagar centre in training 
and testing population in both the data sets. For the Rajendra Nagar 
centre, hybrid models were not developed because the residuals of the 
INGARCH, ZIPAR, and ZINBAR models were non-significant. The per
formance hierarchy of the models for YSB count data at Rajendra Nagar 
was as follows; ANN > ZINBAR > ZIPAR > INGARCH for both the data 
sets. Centre-wise forecasts of different models for both data set 1 and 2 
were provided in Supplementary Tables ST18-ST27, respectively. Actual 
vs. fitted plots for Data Set 1 are shown in Figs. 4a–4e, whereas for Data 
Set 2, the actual vs. fitted plots are provided in Supplementary 
Figure SF2.

The error reduction achieved by the proposed ZINBAR-ANN model 
compared to classical models is shown in supplementary Tables ST29- 
ST33 for both training and testing splits of the datasets. The ZINBAR- 
ANN model consistently outperforms both the INGARCH and ZINBAR 
models, with significant error reductions across various datasets and 
locations. In Dataset 1, for Warangal, it reduces errors by 68.3 % during 
training and 60.7 % during testing compared to the ZINBAR model, and 
by 73.7 % and 65.7 % compared to the INGARCH model. Similar 

Table 3 
Parameter estimates of the ZINBAR models for the study centers for data set 1.

Parameter P (Y>0) P(Y=0) Box-Pierce non correlation test for residuals

Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|)

Warangal
Intercept 2.26 0.09 26.02 <0.0001 0.90 0.32 2.83 <0.0001 χ2 = 8.08 

p = 0.05ysb_lag1 0.02 0.002 7.72 <0.0001 -0.83 0.30 -2.75 0.01
ysb_lag2 0.003 0.002 1.41 0.159 -0.71 0.42 -1.67 0.10
ysb_lag3 0.003 0.002 1.19 0.236 0.00 0.06 -0.07 0.95
ysb_lag4 0.002 0.002 0.75 0.452 0.07 0.08 0.92 0.36
ysb_lag5 0.002 0.002 1.23 0.22 -0.02 0.03 -0.80 0.43
Log(theta) 0.053 0.018 2.94 0.003 ​ ​ ​ ​

Rajendra Nagar
Intercept 2.34 0.09 23.6 < 0.001 1.4 0.27 5.03 <0.001 χ2 = 0.085 

p= 0.92ysb_lag1 0.02 0.2 8.11 <0.001 -1.07 0.36 -2.90 0.003
ysb_lag2 0.001 0.02 1.09 0.27 -0.46 0.20 -2.27 0.02
ysb_lag3 0.0014 0.01 0.09 0.92 -0.03 0.07 -0.5 0.61
ysb_lag4 0.0015 0.002 0.69 0.49 -0.05 0.06 -0.82 0.41
ysb_lag5 0.0012 0.001 1.33 0.18 -0.009 0.03 -0.25 0.79
Log(theta) 2.34 0.09 23.61 < 0.001 1.4 0.27 5.03 <0.001

Pattambi
(Intercept) 2.9 0.096 40.4 <0.001 -0.10 0.40 -0.25 0.8 χ2 = 9.07 

p = 0.02ysb_lag1 0.001 <0.0001 7.62 <0.001 -1.48 0.52 -2.87 0.004
ysb_lag2 <0.0001 <0.0001 1.65 0.09 0.002 0.03 0.07 0.94
ysb_lag3 <0.0001 <0.0001 -0.17 0.86 0.007 0.07 0.11 0.91
ysb_lag4 <0.0001 <0.0001 2.24 0.02 -0.001 0.06 -0.01 0.98
ysb_lag5 <0.0001 <0.0001 0.5 0.57 -0.041 0.06 -0.64 0.52
Log(theta) -0.9 0.64 -13.6 <0.001 ​ ​ ​ ​

Raipur
Intercept 2.5 0.071 35.20 <0.001 -7.7 0.42 -4.27 <0.001 χ2 = 3.91 

p = 0.04ysb_lag1 0.015 0.0023 10.17 <0.001 -34.7 0.032 -1.07 1.03
ysb_lag2 0.001 0.002 0.63 0.53 1.4 0.045 2.04 0.56
ysb_lag3 0.0015 0.001 0.90 0.36 -1.0 0.02 -0.49 0.45
ysb_lag4 0.0013 0.002 0.38 0.7 2.5 0.01 0.35 1.05
ysb_lag5 0.003 0.001 2.34 0.01 -1.3 0.02 -0.05 0.24
Log(theta) 0.402 0.07 5.71 <0.001 ​ ​ ​ ​

Chinsurah
(Intercept) 4.02 0.06 61.95 <0.001 -9.48 141.30 -0.07 0.94 χ2 = 4.92 

p = 0.03ysb_lag1 0.003 0.0004 9.98 <0.001 -4.81 143.25 -0.03 0.97
ysb_lag2 -0.0007 0.0003 -2.25 0.024 0.11 51.13 0.00 0.998
ysb_lag3 0.0001 0.0003 0.44 0.66 -0.12 7.07 -0.02 0.98
ysb_lag4 0.0005 0.0004 1.49 0.13 0.32 17.33 0.005 0.95
ysb_lag5 0.0007 0.0003 2.47 0.014 0.01 0.97 0.01 0.99
Log(theta) 0.32 0.06 4.96 <0.001 ​ ​ ​ ​

Table 4 
ANN model specifications for the study centres for data set 1.

Specifications Warangal Rajendra 
Nagar

Pattambi Raipur Chinsurah

Input lag 4 5 4 1 1
Output 

variable/ 
dependent 
variable

1 1 1 1 1

Hidden nodes 5 10 5 5 5
Hidden layers 1 1 1 1 1
Exogenous 

variables
6 6 6 5 5

Model 4:5S:1L 5:10S:1L 3:6S:1L 1:5S:1L 1:5S:1L
Total number 

of 
parameters

61 131 61 41 41

Network type Feed 
Forward

Feed 
Forward

Feed 
Forward

Feed 
Forward

Feed 
Forward

Activation 
function (I: 
H)

Sigmoidal Sigmoidal Sigmoidal Sigmoidal Sigmoidal

Activation 
function(H: 
O)

Identity Identity Identity Identity Identity

Box-Pierce 
non- 
correlation 
test for 
residuals

χ2 =

0.03 
p = 0.85

χ 2 =

0.08 
(p = 0.07)

χ2 =

0.02 
(p =
0.871)

χ2 =

0.26 
(p =
0.60)

χ2 =

3.25 
(p = 0.07)
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improvements are seen in Pattambi, Raipur, and Chinsurah, with re
ductions ranging from 46.9 % to 75.8 %. For Dataset 2, the ZINBAR-ANN 
model achieves error reductions of up to 75.6 % in training and 67.8 % 
in testing compared to the INGARCH model, with consistent results 
across locations. At the Rajendra Nagar Centre, the ANN model also 
showed substantial error reductions compared to the INGARCH and 
ZIPAR models, especially in Dataset 1, where it reduced errors by 71.1 % 
in training and 60.0 % in testing. However, the ANN model showed 
smaller improvements compared to the ZINBAR model, particularly 
during testing, with reductions of 23.0 % for Dataset 1 and 29.5 % for 
Dataset 2. These results emphasize the strong performance of the pro
posed two stage ZINBAR-ANN model, especially compared to classical 
models.

Along with the MSE and RMSE, the study also incorporates two 
additional measures, MAE and MASE. The MAE provides a direct mea
sure of the average magnitude of forecasting errors, expressed in the 
same units as the original data, making it easy to interpret and compare 
across models. In the present analysis, the proposed ZINBAR-ANN 
hybrid model consistently provided the lowest MAE values across all 
locations and data splits, both in training and testing phases. For 
example, in the testing set for Warangal, the MAE drops significantly 
from 29.43 (INGARCH) to 8.00 (ZINBAR-ANN), while in Pattambi, the 
reduction is even more substantial from 470.29 to 123.29 for data set 1. 
Similar trends are observed in other locations such as Raipur and 
Chinsurah, demonstrating the hybrid model’s effectiveness in reducing 
forecasting error. The same pattern holds for dataset 2 as well.

The MASE metric further enhances interpretability by scaling the 
error against that of a naïve forecast model, which assumes that the 
forecast at time t equals the observed value at time t-1. A MASE value 
below 1 indicates that the proposed model outperforms the naïve 
benchmark. Across all study locations, the ZINBAR-ANN model consis
tently records MASE values well below 1, mostly below 0.5, highlighting 
its robust predictive performance. For instance, in Warangal (testing), 
the MASE decreases from 1.40 (INGARCH) to 0.38 (ZINBAR-ANN); in 
Raipur, it improves from 0.50 to 0.12; and in Pattambi, from 0.91 to 0.24 
for data set 1. Similar results were observed for dataset 2. These results 
confirm that the ZINBAR-ANN model not only reduces absolute fore
casting error but also generalizes better across different datasets and 
locations. Hence, the inclusion of MAE and MASE provides a more 
comprehensive and scalable evaluation, reinforcing the superiority of 
the hybrid model in predicting complex zero-inflated, over dispersed 
pest count data.

However, these comparison criteria only show the differences be
tween the observed and predicted values of the models. Therefore, the 
Diebold–Mariano (DM) test was employed to assess the statistical sig
nificance of the differences in model performance. While absolute 
metrics quantify the magnitude of forecast errors, they do not indicate 
whether one model performs significantly better than another in a sta
tistical sense. The DM test addresses this limitation by comparing the 
forecast errors of two models over time, testing the null hypothesis that 
both models have equal predictive accuracy. The results for both Dataset 
1 and Dataset 2 (Supplementary Tables ST34 and ST35) clearly 

Table 5 
Comparison criteria for different models for YSB populations in training and testing sets for data set 1.

Data Split Criteria INGARCH ZIPAR ZINBAR ANN INGARCH-ANN ZIPAR-ANN ZINBAR-ANN

Warangal Training Set MSE 1090.92 890.23 756.96 339.69 152.96 112.79 75.75
RMSE 33.03 29.80 27.51 18.43 12.37 10.62 8.70
MAE 23.02 18.81 16.38 10.82 7.12 5.43 4.06
MASE 1.56 1.29 1.12 0.74 0.49 0.38 0.28

Testing Set MSE 1103.17 1057.40 839.36 429.75 280.86 218.11 129.97
RMSE 33.21 32.52 28.97 20.73 16.76 14.77 11.40
MAE 29.43 30.86 26.14 17.00 13.86 11.57 8.00
MASE 1.40 1.47 1.24 0.81 0.66 0.55 0.38

Rajendra Nagar Training Set MSE 4205.90 3469.80 2117.30 340.50 ​ ​ ​
RMSE 64.85 58.90 46.01 18.45 ​ ​ ​
MAE 33.86 25.80 19.03 10.17 ​ ​ ​
MASE 1.39 1.10 0.81 0.43 ​ ​ ​

Testing Set MSE 7364.73 5903.67 2220.57 1102.14 ​ ​ ​
RMSE 85.82 76.84 47.12 33.20 ​ ​ ​
MAE 73.29 65.57 46.00 22.14 ​ ​ ​
MASE 2.36 2.12 1.48 0.71 ​ ​ ​

Pattambi Training Set MSE 248,930.42 140,362.22 98,544.57 72,631.99 36,138.79 20,735.13 15,915.50
RMSE 498.93 374.65 313.92 269.50 190.10 144.00 126.16
MAE 219.20 143.23 116.19 103.58 71.71 43.64 41.45
MASE 1.50 0.99 0.80 0.72 0.50 0.30 0.28

Testing Set MSE 299,906.78 194,479.43 171,990.57 119,360.71 59,570.43 40,866.29 19,093.60
RMSE 547.64 441.00 414.72 345.49 244.07 202.15 138.18
MAE 470.29 372.86 346.29 303.00 213.57 196.29 123.29
MASE 0.91 0.72 0.67 0.59 0.41 0.38 0.24

Raipur Training Set MSE 885.20 634.56 501.23 310.67 272.52 86.28 56.80
RMSE 29.75 25.19 22.39 17.63 16.51 9.29 7.54
MAE 18.57 15.42 14.05 11.51 9.72 5.82 4.66
MASE 0.74 0.63 0.58 0.45 0.40 0.24 0.19

Testing Set MSE 1569.00 1108.14 891.14 553.57 402.71 308.57 108.29
RMSE 39.61 33.29 29.85 23.53 20.07 17.57 10.41
MAE 35.57 30.43 26.86 15.57 17.86 14.57 8.29
MASE 0.50 0.43 0.38 0.22 0.25 0.21 0.12

Chinsurah Training Set MSE 2380.55 2065.50 1810.82 1415.25 810.03 585.32 379.02
RMSE 48.79 45.45 42.55 37.62 28.46 24.20 19.47
MAE 9.89 17.60 15.59 14.34 9.89 8.88 8.19
MASE 0.13 0.24 0.21 0.20 0.13 0.12 0.11

Testing Set MSE 2999.18 2308.33 1946.41 1627.14 1418.00 1024.40 554.79
RMSE 54.76 48.05 44.12 40.34 37.70 32.00 23.55
MAE 52.86 44.43 39.71 36.00 33.71 29.14 20.57
MASE 1.97 1.66 1.48 1.34 1.26 1.09 0.77
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Fig. 4. Actual vs. fitted plots of YSB populations for data set 1 depicting a) Warangal, b) Rajendra Nagar, c) Pattambi, d) Raipur and e) Chinsurah.
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demonstrate that the ZINBAR-ANN hybrid model (M7) significantly 
outperforms not only the individual models (INGARCH, ZIPAR, ZINBAR, 
ANN) but also the other hybrid models (INGARCH-ANN, ZIPAR-ANN) 
across almost all centres and model pairings. For instance, in War
angal (Dataset 1), the DM statistic for M1 vs. M7 is 7.56 (p < 0.001), and 
in Raipur, it is 5.24 (p < 0.01), indicating strong evidence against the 
null hypothesis. Similarly, in Dataset 2, the M1 vs. M7 comparisons 
show highly significant values across centres, such as 6.62 in Warangal 
and 5.79 in Raipur (both p < 0.0001). Even when comparing M6 
(ZIPAR-ANN) with M7 (ZINBAR-ANN), significant DM statistics are 
observed (for example, 3.65 in Pattambi and 3.84 in Raipur), indicating 
that ZINBAR-ANN consistently provides superior forecasts even among 
hybrid competitors. An exception is seen in Rajendra Nagar, where the 
ANN model (M4) occasionally outperforms others, aligning with earlier 
findings. Overall, the consistently significant DM test results underscore 
the robustness and statistical superiority of the proposed ZINBAR-ANN 
model in forecasting complex, overdispersed, and nonlinear count 
time series data.

Several studies have reported that hybrid two-stage models and 
machine learning models perform better than classical models. How
ever, these studies are not specifically related to count time series 
models. For instance, [35] modeled and forecasted rice gall midge 
populations using count and machine learning models and found that 
machine learning approaches outperformed the classical count time 
series INGARCH model. Similarly, hybrid models demonstrated superior 
performance in forecasting rainfall [45], predicting rice yield [46], and 
forecasting temperature [47,48]. In addition, two-stage hybrid models 
have shown effectiveness in credit risk assessment [49], short-term wind 
direction forecasting [50], and measuring the sustainable performance 
of the Indian retail chain. Furthermore, diagnostic checks on the re
siduals obtained from the INGARCH, ZIPAR, ZINBAR, ANN, 
INGARCH-ANN, and ZIPAR-ANN models showed that they were 
non-autocorrelated and non-random, indicating that the models under 
consideration were adequate. The proposed two stage ZINBAR-ANN 
approach was effective in modeling over-dispersed count data, 
addressing challenges like excess zeros, which commonly observed in 
light trap count data and results in over dispersion, which simpler 
models like Poisson often struggle to handle. The ANN component excels 
at capturing non-linear relationships, learning from the residual patterns 
left after fitting the ZINBAR model, allowing it to detect more complex 
and heterogeneous patterns that a simple count model may overlook.

YSB is a serious insect pest of rice inflicting significant crop loss 
across the Indian sub- continent. It is a monophagous insect with an 
interesting reproductive biology. The female moths start laying eggs 
next day of its first appearance in the season, for 1–2 days. The eggs 
hatch in 7–8 days [51,52] and the neonate larvae enter inside the rice 
plant within 35 min and remain inside until the adult emergence. This 
very behaviour makes YSB management challenging as it is protected 
from the natural enemies and to chemical insecticides. Hence, the tactics 
aimed at YSB management, especially the insecticides need to be 
delivered during this narrow window of about 10-days, targeting the egg 
stage and neonate larvae and thus making the ‘timing’ a critical factor. 
In this scenario, the two-stage ZINBAR-ANN model because of its high 
precision, as evidenced in this study will be of immense value in fore
casting YSB population based on the weather data. An efficient fore
casting model of YSB population in rice crop ecosystem will be a 
precursor for developing an area wide forewarning system to dissemi
nate advisories for the timely application of management tactics to avoid 
yield losses by the YSB damage in rice crop.

5. Conclusion

In the current study, two-stage zero-inflated count time series models 
were developed to predict the occurrence of the Yellow Stem Borer 
(YSB) population using weather variables. Weather variables such as 
maximum and minimum temperature, morning and evening relative 

humidity, rainfall, and sunshine hours were found to affect the occur
rence of the rice YSB population. The classical count time series 
INGARCH model fails to perform well when a significant proportion of 
zeros occur in the population due to the non-occurrence of YSB in certain 
Standard Meteorological Weeks (SMWs). In such cases, zero-inflated 
models were found to be suitable alternatives.

The traditional count time series models, namely INGARCH, ZIPAR, 
and ZINBAR, exhibited significant residuals after model fitting, indi
cating that these models did not provide a satisfactory fit. To improve 
forecasting accuracy, two-stage models were developed, where the sig
nificant residuals were fitted using an Artificial Neural Network (ANN) 
model. The proposed zero-inflated methodology was applied to both 
kharif (dataset 1) and rabi (dataset 2) seasons, and it outperformed 
classical models in both training and validation datasets. Additionally, 
the percentage error reduction achieved by the ZINBAR-ANN strategy, 
compared to classical and other models, indicated a substantial 
improvement in forecasting accuracy. The methodology proposed in this 
study aids in predicting the YSB population, enabling the proactive 
implementation of preventive and curative pest management strategies. 
This approach can, in turn, assist in planning strategies to reduce rice 
yield loss due to the YSB pest. In the future, prediction models for 
different crop pests can be developed using the proposed models and 
tested with various combinations of count time series and machine 
learning models.
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[30] L.P. Fávero, J.F. Hair Jr, R.D.F. Souza, M. Albergaria, T.V. Brugni, Zero-inflated 
generalized linear mixed models: a better way to understand data relationships, 
Mathematics 9 (2021) 1100.

[31] K.I. Kang, K. Kang, C. Kim, Risk factors influencing cyberbullying perpetration 
among middle school students in Korea: analysis using the zero-inflated negative 
binomial regression model, Int. J. Environ. Res. Public Heal. 18 (2021) 2224.

[32] Y. Hao, C. Tian, A novel two-stage forecasting model based on error factor and 
ensemble method for multi-step wind power forecasting, Appl. Energy 238 (2019) 
368–383.

[33] J. Liu, S. Zhang, H. Fan, A two-stage hybrid credit risk prediction model based on 
XGBoost and graph-based deep neural network, Expert. Syst. Appl. 195 (2022) 
116624.

[34] R Core Team, R: A language and Environment for Statistical Computing (Version 
3.5.1) [Computer Software], R Foundation for Statistical Computing, 2018.

[35] S. Rathod, S. Yerram, P. Arya, G. Katti, J. Rani, A.P. Padmakumari, N. Somasekhar, 
C. Padmavathi, G. Ondrasek, S. Amudan, S. Malathi, N.M. Rao, K. Karthikeyan, 
N. Mandawi, P. Muthuraman, R.M. Sundaram, Climate-based modeling and 
prediction of Rice Gall Midge populations using count time series and machine 
learning approaches, Agronomy 12 (2022).

[36] Heinen, Modelling time series count data: an autoregressive conditional Poisson 
model, SSRN. 1117187 (2003).

[37] K. Fokianos, Some recent progress in count time series, Statistics. 45 (2011) 49–58.
[38] K. Tawiah, W.A. Iddrisu, K.S. Asosega, Zero-Inflated Time series modelling of 

Covid-19 deaths in Ghana, J. Environ. Public Heal. (2021) 1–9.
[39] J. Kim, S. Park, H. Lee, A hybrid model combining the negative binomial and logit 

distributions for count data analysis, J. Stat. Comput. Simul. 91 (2021) 2456–2471.
[40] F.L. Pinheiro, M.P. Andrade, G. Kreimann, Comparison of zero-inflated models for 

overdispersed count data, Stat. Methods Appt. 30 (2021) 111–128.
[41] G.P. Zhang, Time series forecasting using a hybrid ARIMA and neural network 

model, Neurocomputing. 50 (2003) 159–175.
[42] R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy, Int. J. 

Forecast. 22 (4) (2006) 679–688.
[43] F.X. Diebold, R.S. Mariano, Comparing predictive accuracy, J. Bus. Econ. Stat. 13 

(3) (1995) 253–263.
[44] B.N.K. Reddy, S. Rathod, S. Kallakuri, Y. Sridhar, M. Admala, S. Malathi, P. Pandit, 

B. Jyostna, Modelling the relationship between weather variables and rice yellow 
stem borer population: A count data modelling approach, Int. J. Environ. Clim. 
Chang. 12 (2022) 3623–3632.

[45] K.N.Singh Saha, M. Ray, S. Rathod, A hybrid spatio-temporal modelling: an 
application to space-time rainfall forecasting, Theor. Appl. Climatol. 142 (2020) 
1271–1282.

[46] S. Rathod, A. Saha, R. Patil, G. Ondrasek, C. Gireesh, M.S. Anantha, D.V.K.N. Rao, 
N. Bandumula, P. Senguttuvel, A.K. Swarnaraj, S.N. Meera, A. Waris, 
P. Jeyakumar, B. Parmar, P. Muthuraman, R.M. Sundaram, Two-stage 

B.N.K. Reddy et al.                                                                                                                                                                                                                             Smart Agricultural Technology 12 (2025) 101381 

13 

https://doi.org/10.1016/j.atech.2025.101381
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0001
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0001
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0001
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0002
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0002
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0002
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0003
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0003
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0004
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0004
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0005
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0005
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0006
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0006
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0007
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0007
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0008
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0008
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0009
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0009
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0010
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0010
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0011
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0011
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0012
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0012
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0013
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0013
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0013
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0014
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0014
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0014
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0016
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0016
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0016
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0017
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0017
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0018
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0018
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0018
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0019
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0019
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0019
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0020
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0020
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0021
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0021
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0022
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0022
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0022
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0023
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0023
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0023
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0024
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0024
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0025
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0025
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0026
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0026
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0026
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0027
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0027
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0028
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0028
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0028
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0029
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0029
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0029
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0029
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0030
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0030
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0031
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0031
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0031
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0032
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0032
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0032
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0033
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0033
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0033
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0034
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0034
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0034
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0035
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0035
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0036
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0036
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0036
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0036
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0036
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0037
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0037
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0038
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0039
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0039
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0040
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0040
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0041
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0041
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0042
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0042
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0043
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0043
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0044
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0044
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0045
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0045
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0045
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0045
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0046
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0046
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0046
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0047
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0047
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0047


spatiotemporal time series modelling approach for rice yield prediction & 
advanced agroecosystem management, Agronomy 11 (2021) 2502.

[47] K.N.Singh Saha, M. Ray, S. Rathod, M. Dhyani, Fuzzy rule-based weighted space- 
time autoregressive moving average models for temperature forecasting, Theor. 
Appl. Climatol. 150 (2022) 1321–1335.

[48] M.Liu Rao, M. Goh, J. Wen, 2-stage modified random forest model for credit risk 
assessment of P2P network lending to "Three Rurals" borrowers, Appl. Soft. 
Comput. 95 (2020) 106570.

[49] Z. Tang, G. Zhao, T. Ouyang, Two-phase deep learning model for short-term wind 
direction forecasting, Renew. Energy 173 (2021) 1005–1016.

[50] N. Pachar, J.D. Darbari, K. Govindan, P.C. Jha, Sustainable performance 
measurement of Indian retail chain using two-stage network DEA, Ann. Oper. Res. 
310 (2022) 505–527.

[51] D. Panigrahi, S. Rajamani, Studies on the biology and reproductive behaviour of 
Scirpophaga incertulas Walker, Oryza, 45 (1) (2008) 137–141.

[52] G. Nayak, A. Prabhuraj, S. Hurali, S.G. Hanchinal, M. Bheemanna, B.G. Koppalkar, 
J.M. Nidagundi, Studies on reproductive biology of yellow stem borer, scirpophaga 
incertulas Walker in the changing climate scenario, Int. J. Environ. Clim. Chang. 13 
(11) (2023) 2354–2361.

B.N.K. Reddy et al.                                                                                                                                                                                                                             Smart Agricultural Technology 12 (2025) 101381 

14 

http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0047
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0047
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0048
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0048
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0048
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0049
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0049
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0049
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0050
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0050
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0051
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0051
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0051
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0052
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0052
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0053
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0053
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0053
http://refhub.elsevier.com/S2772-3755(25)00612-4/sbref0053

	An innovative two-stage, zero-inflated, hybrid count time series model for predicting rice yellow stem borer using weather  ...
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Statistical models
	2.2.1 INGARCH (Integer valued generalized autoregressive conditional heteroscedastic) model
	2.2.2 Zero inflated Poisson Autoregressive (ZIPAR) model
	2.2.3 Zero inflated negative binomial autoregressive (ZINBAR) model
	2.2.4 Artificial neural network model (ANN)
	2.2.5 Proposed two stage modelling

	2.3 Comparison criteria
	2.3.1 MSE and RMSE
	2.3.2 MAE
	2.3.3 MASE

	2.4 Diebold–Mariano test

	3 Results
	3.1 Results of INGARCH models
	3.2 Results of ZIPAR models
	3.3 Results of ZINBAR models
	3.4 Results of ANN models
	3.5 Two stage modelling and forecasting
	3.5.1 Results of INGARCH-ANN models
	3.5.2 Results of ZIPAR-ANN models
	3.5.3 Results of ZINBAR-ANN models


	4 Discussion
	5 Conclusion
	Ethical statement
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Supplementary materials
	Data availability
	References


